如下参考:
1.首先选择最后一个标准偏差来显示复制的单元格,如下图所示。
2.点击[start]-[autosum]旁边的三角形,就会出现一个下拉菜单。点击【其他功能】如下图所示。
3.出现[insertfunction]窗口,点击[selectcategory],选择[all],找到standarddeviation[STDEVP]函数,如下图所示。
4.单击ok后,单击箭头所指的位置并选择数据,如下图所示。
5.选择后,点击“ok”,可以看到计算出的标准差,如下图所示。
标准误差(均方误差)
在相同测量条件下进行的测量称为等精度测量,例如在同样的条件下,用同一个游标卡尺测量铜棒的直径若干次,这就是等精度测量。对于等精度测量来说,还有一种更好的表示误差的方法,就是标准误差。
标准误差定义为各测量值误差的平方和的平均值的平方根,故又称为均方误差。
设n个测量值的误差为ε1、ε2……εn,则这组测量值的标准误差σ等于:
由于被测量的真值是未知数,各测量值的误差也都不知道,因此不能按上式求得标准误差。测量时能够得到的是算术平均值(),它最接近真值(N),而且也容易算出测量值和算术平均值之差,称为残差(记为v)。理论分析表明①可以用残差v表示有限次(n次)观测中的某一次测量结果的标准误差σ,其计算公式为
对于一组等精度测量(n次测量)数据的算水平均值,其误差应该更小些。理论分析表明,它的算术平均值的标准误差。有的书中或计算器上用符号s表示)与一次测量值的标准误差σ之间的关系是
需要注意的是,标准误差不是测量值的实际误差,也不是误差范围,它只是对一组测量数据可靠性的估计。标准误差小,测量的可靠性大一些,反之,测量就不大可靠。进一步的分析表明,根据偶然误差的高斯理论,当一组测量值的标准误差为σ时,则其中的任何一个测量值的误差εi有68.3%的可能性是在(-σ,+σ)区间内。
世界上多数国家的物理实验和正式的科学实验报告都是用标准误差评价数据的,现在稍好一些的计算器都有计算标准误差的功能,因此,了解标准误差是必要的。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)