那么是否还有机会发顶级文章呢?当然有,前提是脑洞够大、眼光够“毒”。
今天介绍的Nature文章,来自光伏领域的大佬——瑞士洛桑联邦理工学院(EPFL)Michael Grätzel教授的研究团队,他们研究了光照对金属卤化物钙钛矿薄膜形成的影响。这个切入点看似稀松平常,可以说该领域的研究者几乎人人都会遇到,但貌似只有他们注意到并进行了深入研究。
Amita Ummadisingu(本文一作,左)和Michael Grätzel教授(右)。图片来源:EPFL
在金属卤化物钙钛矿太阳能电池中,钙钛矿薄膜的质量会直接影响到器件的性能,优化钙钛矿薄膜的形貌显得非常重要。为了提高钙钛矿太阳能电池的性能,科学家们已经开发了许多器件结构及制备工艺,其中包括一步沉积法、顺序沉积法、反溶剂(anti-solvent)法。早期的研究已经发现制备钙钛矿的反应条件会对薄膜质量产生影响,比如反应物浓度以及反应温度。但是,科学家们对控制薄膜质量的精确反应机理以及主要因素的理解还称不上透彻。近日,Michael Grätzel教授研究团队以“光照”为切入点,利用共聚焦激光扫描荧光显微镜(CLSM)以及扫描电子显微镜(SEM)研究了两种常用的钙钛矿制备方法:顺序沉积法和反溶剂法,展示了光照对于钙钛矿生长速率以及薄膜形貌的影响,并对背后的机理进行了深入的研究。
工作介绍视频。视频来源:EPFL
首先,作者研究了光照对于顺序沉积法中钙钛矿形成的影响。在黑暗及光照条件下中,碘化铅(PbI2)沉积在介孔TiO2上,之后浸入甲基碘化铵(CH3NH3I,MAI)溶液中反应形成甲胺铅碘钙钛矿(CH3NH3PbI3)。在黑暗条件下,刚刚旋涂的PbI2薄膜没有展现出明显的结晶特点(图1a)。已有研究表明,结晶的金属卤化物与无定形组分相比,会展现出更强的发光。在浸入MAI溶液6秒后,就能看到明显的PbI2发光点(图1b,用绿色表示),结合SEM图像,可以证明已经形成了PbI2晶体。当浸渍时间增加到8秒时,他们在结晶PbI2簇的中央位置检测到了少量的钙钛矿(图1c,用红色表示),这表明在PbI2结晶之后MAI进入PbI2晶体开始反应生成钙钛矿。随后的结构识别发现了PbI2–钙钛矿混合晶体,这种之前并未见诸报道的现象也证明了PbI2结晶要早于钙钛矿形成。随着浸渍时间的延长,这种插入反应更加明显(图1d/1e)。而在1 Sun光照下,整个反应过程出现了两个明显的差异:光照下钙钛矿的形成更快,形成的晶体更小更多(图1f-1i)。作者还设计实验排除了伴随光照的加热效应对反应的影响,确认上述现象的诱因只有光照。
图1. 顺序沉积法,黑暗及1 Sun光照下制备甲胺铅碘钙钛矿的CLSM及SEM图像(内嵌)。图片来源:Nature
黑暗条件下,随着浸渍时间的延长,晶体的数量并没有随之增加(图1b-1d),这说明晶体成核在最初浸入MAI溶液的几秒内就已经完成,而且随后不会有新核产生。接下来,作者对不同光强下的成核进行了研究。浸渍25秒的样品,黑暗下、0.001 Sun、0.01 Sun、0.1 Sun以及1 Sun下的SEM图片(图2a)表明,尽管在黑暗条件下成核密度很低,但是一经光照,成核密度会呈指数型增加,证实了存在光诱导成核的现象。随后作者继续深入研究了光照影响PbI2膜成核过程的机理,在此不再赘述。
图2. 不同光照下的成核研究。图片来源:Nature
现在已经确定,顺序沉积法中进行光照能够让钙钛矿形成更快而且晶体更小更多,这对太阳能电池来说是好是坏呢?作者们在黑暗条件以及1 Sun条件下制备了光伏器件,黑暗条件下的器件平均光电转换效率(PCE)为5.9%,而1 Sun条件下的平均PCE为12.4%(最高可达13.7%),是黑暗条件下的两倍多。究其原因,可能是因为更小的晶体带来了更好、更均匀的表面覆盖,使得对入射光的吸收更佳,光电流密度更高。
研究完顺序沉积法,作者们继续研究另一种常用方法反溶剂法。该方法中,混合前体溶液(含金属和有机卤化物)被旋涂于基底上,随即滴加反溶剂(钙钛矿在该溶剂中不溶解)帮助钙钛矿形成,最后加热形成产品。有意思的是,光照在此种方法中起到的作用与在顺序沉积法中的正好相反,黑暗条件下用反溶剂法制备的CH3NH3PbI3太阳能电池平均PCE为16.9%(最高可达18.4%),高于1 Sun条件下的平均PCE 13.9%。作者们分析了原因,反溶剂法中,与黑暗条件相比光照下形成的钙钛矿晶体更小数量更多(图3),这与顺序沉积法类似。但是,由于黑暗与光照条件下反溶剂法制备的钙钛矿薄膜的表面覆盖都很好,而光照条件下形成的更多晶体在薄膜中引入了更多的晶界,这损害了太阳能电池的性能。
图3. 反溶剂法中黑暗及光照条件下的钙钛矿薄膜。图片来源:Nature
总而言之,作者通过实验证实黑暗条件对于反溶剂法制备钙钛矿薄膜是有利的,然而对于顺序沉积法来说情况相反,有利的条件变成了光照。这个结论看似简单但却非常重要,再结合对现象背后机理的深入研究,对于控制钙钛矿薄膜的形貌以及高质量钙钛矿太阳能电池的大规模生产都具有指导意义。
聚苯胺的实际合成与结构研究始于20世纪初,英国的Green和德国的Willstatter两个研究小组采用各种氧化剂和反应条件对苯胺进行氧化,得到一系列不同氧化程度的苯胺低聚物。Willstatter将苯胺的基本氧化产物和缩合产物通称为苯胺黑。而Green分别以H2O2,NaClO3为氧化剂合成了五种具有不同氧化程度的苯胺八隅体,并根据其氧化程度的不同分别命名为全还原式(leucoemeraldine)、单醌式(protoemeradine)、双醌式(emeraldine)、三醌式(nigraniline)、四醌式即全氧化式(pernigraniline)。这些结构形式及命名有的至今仍被采用。1968年,Honzl用缩聚方法合成了苯基封端的聚苯胺齐聚物,同年Surville合成了聚苯胺半导体并提出可能的结构形式,而聚苯胺的结构正式为人所认同是在1984年,MacDiarmid提出了聚苯胺可相互转化的4种形式,并认为无论用化学氧化法还是电化学方法合成的导电聚苯胺均对应于理想模型。中科院长春应化所的王佛松等人通过分析聚苯胺的IR和喇曼光谱,确认了醌环的存在并证明了苯、醌环的比例为3:1,MacDiarmid等人据此修正之前的模型,概括出了聚苯胺结构。
聚苯胺掺杂产物的结构,主要由极化子晶格模型和四环苯醌变体模型进行解释。聚苯胺的主要掺杂点是亚胺氮原子。质子携带的正电荷经分子链内部的电荷转移,沿分子链产生周期性的分布。且苯二胺和醌二亚胺必须同时存在才能保证有效的质子酸掺杂。质子掺杂是聚苯胺由绝缘态转变为金属态的关键。本征态的聚苯胺(PAn)是绝缘体,质子酸掺杂或电氧化都可使聚苯胺电导率提高十几个数量级。掺杂态聚苯胺结构中x表示掺杂程度,由掺杂来决定;y表示氧化程度,由合成来决定;A表示质子酸中的阴离子,由掺杂剂决定。然而聚苯胺的掺杂过程与其他导电高分子的掺杂不同,通常导电高分子的掺杂总是伴随着其主链上电子的得失,而聚苯胺
在用质子酸掺杂时,电子数不发生变化。在掺杂过程中H+首先使亚胺上的氮原子质子化,这种质子化使得聚苯胺链上掺杂段的价带上出现了空穴,即P型掺杂,形成一种稳定离域形式的聚翠绿亚胺原子团。亚胺氮原子所带的正电荷通过共轭作用沿分子链分散到邻近的原子上,从而增加体系的稳定性。在外电场的作用下,通过共轭π电子的共振,使得空穴在整个链段上移动,显示出导电性。完全还原型(y=1)的全苯式结构(Leucoemeraldine base)和完全氧化型(y=0)的全醌式结构(Pernigraniline)都为绝缘体,无法通过质子酸掺杂变为导体,在0<y<1的苯-醌交替结构的任一状态都能通过质子酸掺杂,从绝缘体变为导体,称为中间氧化态(Emeraldine)。一般来说化学法合成的聚苯胺y=0.5,即聚苯胺链上醌式环与苯式环之比为1:3,电导率最大。
有人用量子化学算出了中间氧化态聚苯胺的结构。各个芳香环均偏离基准面,属于反式构型,是一个不完全的锯齿状线形结构。进一步研究证实,掺杂态聚苯胺具有与本征态聚苯胺类似的构型。 物质的电学性质取决于其能带结构,物质的能带是由各分子或原子轨道重叠而成,分为价带和导带。通常禁带宽度>10.0 eV时,电子很难激发到导带,物质在室温下显绝缘性;而当禁带宽度为1.0eV左右时,电子则可通过热、振动或光等方式激发到导带,成为半导体。导电高分子都有一个较长的P-电子共轭主链,因此又称为共轭高分子。P-电子共轭体系的成键和反键能带之间的能隙较小,约为1~3eV,接近于无机半导体中的导带的价带能隙。进行掺杂可使其电导率增加甚至十几个数量级,接近于金属电导率。掺杂来源于半导体化学,是指在纯净的无机半导体材料,如硅、锗或镓中,加入少量具有不同价态的第二种物质,以改变半导体材料中的空穴和自由电子的分布状态。导电高分子的掺杂不同于无机半导体的掺杂。无机半导体为原子的替代和镶嵌,而导电高分子的掺杂则常伴随着氧化还原过程。对于无机半导体,掺杂剂可以嵌入到其晶格中,而导电高分子经掺杂后主链会发生变形和位移,但掺杂离子不能嵌入主链中去,只能存在于高分子链与链之间。无机半导体掺杂后形成电子和空穴两种载流子;而对于导电高分子,广为接受的载流子形式有孤子(soliton)、极子(polaron)、双极子(bipolaron)等,这些载流子与高分子链上共轭P-电子紧密相关,而掺杂离子是作为对离子存在的。
从掺杂量上来看,导电高分子的掺杂量很大,可达一半以上,而无机半导体的掺杂量极低,仅为万分之几。另外,在导电聚合物中存在脱掺杂过程,掺杂/脱掺杂过程是可逆的,而无机半导体通常无法实现可逆的脱掺杂。聚苯胺的质子酸掺杂聚苯胺与质子酸反应,电导率大大提高,再与碱反应则又变为绝缘状态,即为质子酸掺杂和反掺杂。聚苯胺的掺杂机制同其它导电高分子的掺杂机制不同,那些高分子掺杂总是伴随着主链上电子的得失,而聚苯胺的质子酸掺杂没有改变主链上的电子数目,只是质子进入高分子主链上才使链带正电,为维持电中性,阴离子也进。半氧化型半还原型的本征态聚苯胺可进行质子酸掺杂,全氧化型聚苯胺可进行离子注入还原掺杂。全还原型聚苯胺只能进行碘掺杂和光助氧化掺杂。MacDiarmid提出当用质子酸进行掺杂时,亚胺基上的氮原子优先发生质子化,酸中的氢质子与氮原子结合形成价电子离域到大分子结构中形成共轭大P键,使聚苯胺的导电性能提高。
聚苯胺除了质子酸掺杂外,还可以进行光诱导掺杂、离子注入掺杂及电化学掺杂等。光诱导掺杂又称/光助氧化掺杂,是在特定波长的光照射下,使某物质释放质子作为聚苯胺的掺杂剂进行反应。研究表明,该掺杂是聚苯胺涂层在金属表面能发挥防腐作用的原因之一。有人通过紫外光加速VC-MAC(Vinylidene Chloride and Methyl Acrylate)释放质子完成了聚苯胺的光诱导掺杂。而使用离子注入掺杂将K+离子注入全氧化态聚苯胺中可以发生还原掺杂,离子注入区呈现n型半导体特性。当有40keVK+离子束注入后,聚苯胺薄膜的电导率随着剂量的增加而迅速增加。在电极表面发生的共轭高分子的掺杂为电化学掺杂。通过改变电极电位使涂覆在电极表面的聚合物膜与电极之间发生电荷转移,即可完成掺杂过程。电化学掺杂可以实现许多化学掺杂法无法实现的掺杂反应,也可以通过控制高分子与电极之间的电位差来改变掺杂程度,且掺杂与脱掺杂是一个完全可逆的过程,该过程中无需除去任何化学产物。 聚苯胺由于其链刚性和链间强相互作用,使它的可溶性极差,在大部分常用的有机溶剂中几乎不溶,仅部分溶于N,N-二甲基甲酰胺和N-甲基吡咯烷酮,这就给表征带来一定的困难,并且极大地限制了聚苯胺的应用。通过结构修饰(衍生物、接枝、共聚)、掺杂诱导、聚合、复合和制备胶体颗粒等方法获得可溶性或水溶性的导电聚苯胺。如在聚苯胺分子链上引入磺酸基团可得到水溶性导电高分子。
不过聚苯胺溶液即使在很低的浓度(<5%)下也有较强的凝胶化倾向,在纺丝溶液所需要的高浓度(>20%)下,凝胶化倾向变得更加明显。以NMP为溶剂溶解高分子质量的聚苯胺,并加入二甲基氮丙啶作为凝胶抑制剂,可获得稳定溶液,这是因为二甲基氮丙啶破坏了分子链间的氢键,阻碍了凝胶作用。但这种溶剂价格昂贵,实用性前景不佳。 聚苯胺的导电性受pH值和温度影响较大,当pH>4时,电导率与pH无关,呈绝缘体性质;当2<pH<4时,电导率随溶液pH值的降低而迅速增加,其表现为半导体特性;当pH<2时,呈金属特性,此时掺杂百分率已超过40%,掺杂产物已具有较好的导电性;此后,pH值再减小时,掺杂百分率及电导率变化幅度不大。研究表明,即使用12.0mol/L的盐酸,掺杂百分率也只有46.7%,即分子链中平均每两个氮原子只有不到一个被质子化。
电导率与温度在一定温度范围可认为随着温度的升高其电导率增大。在一定pH值下,随电位升高,电导率逐渐增大,随后达到一个平台。但电位继续升高时,电导率却急剧下降,最后呈现绝缘体行为。扫描电位的变化反映在聚苯胺的结构上,说明聚苯胺表现的状态中,最高氧化态和最低还原态均为绝缘状态,而只有中间的半氧化态呈导电性。
另外,电导率较高的样品温度依赖性较弱,而电导率较低的样品温度依赖性较强。聚苯胺的电导性不仅与主链结构有关,而且与取代基及取代位置有关。苯环上取代的聚苯胺由于取代基增大了苯环间的平面扭曲角,使主链上的P电子定域性增强,致使高分子的电导率降低。而在胺基氮原子上取代的苯胺衍生物电导率和其烷基取代基的长短有关,即取代基越长,产物的分子量越低,在有机溶剂中的溶解度越大,但电导率随之下降。芳香基取代的聚苯胺的电导率高于烷基衍生物的电导率。有人还尝试碳纳米管掺杂聚苯胺,结果表明碳纳米管的掺入可以有效地提高聚苯胺材料的电性能,但对光性能有着相反的影响。 聚苯胺分子主链上含有大量的共轭P电子,当受强光照射时,聚苯胺价带中的电子将受激发至导带,出现附加的电子-空穴对,即本征光电导,同时激发带中的杂质能级上的电子或空穴而改变其电导率,具有显著的光电转换效应。而且在不同的光源照射下响应非常复杂且非常迅速。在激光作用下,聚苯胺表现出高非线性光学特性,可用于信息存贮、调频、光开关和光计算机等技术上。
三阶非线性光学效应主要来自载流子自定域而形成的激子传输,并且主要依赖于掺杂度、聚合条件以及主链的构相和取向、共轭长度、取代基种类等,不同的氧化态和掺杂度的聚苯胺具有不同的三阶非线性光学系数。 聚苯胺的表征手段有电导率测量、TG-DTA、XRD、FTIR、UV-vis、XPS、TEM和SEM等。其中,TG-DTA测定复合前后的热稳定性变化,XRD测定复合前后的晶型变化,FTIR测定复合前后的官能团变化,UV-vis可表征NCs结构及PAn掺杂状态的变化,XPS结合能可表征NCs中各元素化学态的变化和掺杂剂对N结合能的影响,TEM和SEM直观显示出NCs的形貌;而根据聚苯胺的特殊功能,又有特殊的表征手段,如通过电化学阻抗谱和阳极极化曲线表征防腐蚀性能,通过循环伏安法表征电极性能,通过磁化系数、电子顺磁共振技术、比饱和磁化强度、SQUID表征磁性能等。各表征手段中,以TEM和SEM的形貌表征最为直观。
聚苯胺紫外光谱图册参考资料。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)