【求助】如何做AAO模板合成材料的SEM?

【求助】如何做AAO模板合成材料的SEM?,第1张

yiyi5104(站内联系TA)可是用砂纸打磨不会把模板能坏了吗?wangfang2789(站内联系TA)打磨必须十分细心,砂纸越细越好,我用的是2000的,操作过程确实有点难度,不知道是否还有更好的办法。yiyi5104(站内联系TA)就是呀,还有腐蚀完了,是不是要用去离子水冲洗呢yiyi5104(站内联系TA)就是呀,这是一项非常细的工程,那我腐蚀完了是不是需要用去离子水把残留的氢氧化钠去除呀,如果不冲洗会有影响吗wangfang2789(站内联系TA)洗是要洗,只是模板泡软了,一冲就全碎了,要很小心的洗。用滴管滴点水稀释几次就可以吧。wangfang2789(站内联系TA)没冲洗的我也没试过wangfang2789(站内联系TA)你的是用什么方法做的纳米线?yiyi5104(站内联系TA)就是用AAO模板和SOL-GEL连用啊,呵呵。。还不知道具体形貌是什么呢,你呢?yiyi5104(站内联系TA)我也是刚踏进这个领域,有很多东西需要摸索呀,:mad:zxf984(站内联系TA)大家多交流!!我也在做AAOwangfang2789(站内联系TA)我也是用这个方法做,做了SEM,但不是很成功,还在摸索中。我就浸泡了一下,做出来的是纳米管,不知道有没有什么好方法可以让溶胶容易进入模板孔中?yiyi5104(站内联系TA)你已经做出纳米管来了呀,嘿嘿。。我就是想做纳米管,你就是直接浸泡吗?那溶胶能进去吗?我就是害怕进不去,我不知道这个溶胶的粘度到底是多大为好,呵呵。。多多指教了,据说还可以用超声的方法也,你试试wangfang2789(站内联系TA)我就直接浸泡的,纳米管的管壁很薄,我想做厚点,做成纳米线也行,超声的方法怎么操作?浸泡在溶胶中然后震荡吗?多长时间呢?yiyi5104(站内联系TA)恩,据说这样可以把模板孔道里的空气赶走,使溶胶更容易进入孔呢,还有就是你可以用一下真空呀,呵呵。。其实我也不知道哈,因为我还没有做出什么东西,我们老师想让我做纳米管,我还没有做出来呢,你的纳米管是怎么做的啊,你用的溶胶粘度怎么样,浸泡多久就可以了?:Dyiyi5104(站内联系TA)为了能生成线,你可以超声的时间长点,注意别震碎了wangfang2789(站内联系TA)超声的方法的文献可以介绍给我看下不?我就浸泡了半个小时,粘度不是很大,跟水差不多。

在膜的实际应用过程中,如何有效控制膜污染一直是一个较大的难题,作为分离膜中较特殊一员的预涂动态膜在抗污染及清洗再生方面具有较大优势,并具有制备工艺简单、膜通量高及处理效果好等优点,已成为近年来的一大研究热点。为此,本论文以预涂动态膜处理乳化油废水为应用背景,在涂膜材料筛选、预涂动态膜形成机理、预涂动态膜制备工艺及乳化油废水处理工艺优化、抗污染性能及其清洗再生等方面展开了研究。 在涂膜材料筛选研究中,以乳化油废水处理中的膜通量和截留率为判据,考察了各涂膜材料的性能,并用SEM扫描电镜进行了形貌分析。用高岭土、TiO2、ZnO2、 MnO2和Fe(OH)2·FeOOH涂膜30分钟时,膜通量已达到稳定状态,动态膜层已基本形成用聚丙烯酸、聚乙二醇和硅酸钠涂膜结束时,膜通量还未稳定,其衰减幅度非常大。除聚丙烯酸和聚乙二醇预涂动态膜外,其它预涂动态膜表面都比基膜表面密实。处理乳化油废水过程中,基膜直接处理时的膜通量衰减最严重,截留率也最低用高岭土、TiO2、ZnO2、MnO2和Fe(OH)2·FeOOH预涂动态膜处理时不仅稳态膜通量较高,而且稳定状态下的截留率也较高,渗透液含油量都低于10 mg·L-1。综合各预涂动态膜涂膜的分离性能、SEM膜表面形貌、材料价格及类型等因素,最终筛选高岭土和MnO2在后续试验研究中使用。 在预涂动态膜形成机理研究中,探讨了预涂动态膜形成过程中涂膜粒子的转移规律,并对预涂动态膜形成机理进行了模型化研究,还通过实验验证了模型的有效性。在膜孔堵塞、深床过滤、颗粒受力平衡及滤饼过滤基本理论基础之上,提出悬浮颗粒物堵塞基膜膜孔和形成动态膜层是预涂动态膜形成过程中同时并存的粒子行为,且动态膜层对小于基膜膜孔的细小颗粒物具有捕集作用,以此为基础建立了一种新的预涂动态膜形成过程理论模型。在不同错流速度、跨膜压差、涂膜溶液浓度及操作温度下,膜通量和涂膜量的模型计算值和实验值的吻合度较好,模型模拟过程是有效的。在预涂动态膜的制备过程中,动态膜层阻力、基膜总阻力及动态膜层比阻等模型参数不易直接测定出来,而掌握这些参数的变化特性有助于充分认识预涂动态膜形成机理,所建立模型还能有效模拟这些参数在不同制备条件下的变化特性,为优化工艺运行参数提供理论参考。 在预涂动态膜制备工艺研究中,考察了预涂动态膜制备工艺条件对其处理乳化油废水过程中的膜通量和截留率的影响。基膜孔径在微滤范围内变动及涂膜所用跨膜压差对预涂动态膜处理乳化油废水中的膜通量和截留率影响不大而涂膜所用错流速度和涂膜溶液浓度对预涂动态膜处理乳化油废水中的膜通量和截留率有一定的影响。高岭土预涂动态膜最佳制备条件为:基膜平均孔径为1.0μm,涂膜溶液浓度为0.4 g·L-1,错流速度为1.5 m·s-1,跨膜压差为0.2 MPa。高岭土/MnO2双层复合预涂动态膜处理乳化油废水的效果优于其它类型预涂动态膜,涂膜时高岭土和KMnO4溶液的最佳浓度分别为0.4g·L-1和0.1 g·L-1。 在乳化油废水处理工艺研究中,以乳化油废水处理过程中的稳态膜通量和截留率为指标,分析讨论了预涂动态膜在不同工艺条件下处理乳化油废水的适宜性。对高岭土预涂动态膜而言,跨膜压差及操作温度越高,稳态膜通量越高,截留率越低错流速度越高,稳态膜通量及截留率越高当废水呈酸性时,稳态膜通量较高,但渗透液呈酸性,不宜在酸性条件使用。在跨膜压差和错流速度分别为0.2 MPa和在1.5 m·s-1,废水排出温度或室温及中性或弱碱性条件下操作时较适宜。对高岭土/MnO2双层复合预涂动态膜而言,截留率随乳化油浓度的增高而增高,在低浓度范围内增加乳化油浓度时,稳态膜通量降幅较大若把废水pH值从6.8调至10.5,截留率变化不大,膜通量小幅上升,若把废水pH值从10.5调节至4.2,截留率小幅下降,膜通量升幅明显,但渗透液呈酸性当操作温度从283 K升至313 K时,稳定状态下的截留率从99.9%降至98.1%,稳态膜通量从120.1 L·m-2·h-1升至153.2 L·m-2·h-1,低温下升高温度时,稳态膜通量升幅明显。 在预涂动态膜抗污染性能及其清洗工艺研究中,测算了预涂动态膜及陶瓷膜(基膜)分别处理乳化油废水中的阻力分布,分析讨论了预涂动态膜的抗污性能,提出了合理有效的清洗工艺。乳化油污染阻力明显高于基膜固有阻力及涂膜粒子造成的阻力,乳化油污染作用是膜通量发生衰减的主要原因复合预涂动态膜所用基膜的污染程度低于高岭土预涂动态膜所用基膜,且两基膜污染程度都比陶瓷膜的内部污染轻复合动态膜层污染程度比高岭土动态膜层轻。清洗污染预涂动态膜时,若去掉动态膜层后基膜纯水通量衰减率低于80%时,基膜不经清洗并可直接涂膜否则,必须清洗基膜,此时可先用小功率超声探头清洗5分钟,再用0.1 mol·L-1的氢氧化钠和0.1 mol·L-1盐酸溶液分别反冲洗15分钟,再用小功率超声探头清洗5分钟,基膜纯水通量可恢复98%以上。 综上所述,预涂动态膜处理乳化油废水是一种新型高效的技术,其开发应用前景较好。所建立数学模型的模拟效果好,适用范围广,丰富了预涂动态膜形成理论模型,可为优化预涂动态膜工艺运行参数提供理论参考。

作者&机构

本发明公开一种水热法制备纳米氧化锌的方法。步骤为:以木质素磺酸盐为表面活性剂,利用硝酸锌和氢氧化钠反应水热法制备纳米氧化锌。木质素磺酸盐是亚硫酸法制浆的副产品,其含有丰富的官能团,有良好的扩散性。本发明以木质素磺酸盐为表面活性剂,采用水热法制备纳米氧化锌,操作条件易于控制,设备简单,制备成本低,所制产物颗粒分布均匀,颗粒性能高,粒径分散性良好,分体团聚程度较小,形貌较好,易于实现工业化。

【专利说明】一种水热法制备纳米氧化锌的方法

【技术领域】

[0001]本发明涉及一种水热法制备纳米氧化锌的方法,特别涉及以木质素磺酸盐为表面活性剂制备纳米氧化锌的方法。

【背景技术】

[0002]近年来,半导体材料由于其广泛的应用而得到了深入的研究。具有宽的禁带(337eV)和大的激子结合能(60eV)的 氧化锌,是一种同时拥有半导体和压电特性以及由此导致各种独特性质的材料。纳米氧化锌作为一种新型功能型纳米材料,与传统氧化锌材料相比,它具有比表面积较大、化学活性较高、产品粒度为纳米级等优点。由于纳米材料所特有的表面效应、量子尺寸效应和宏观量子隧道效应等,使得纳米氧化锌在磁、光、电、化学、物理学、敏感性等方面比一般氧化锌产品无法比拟的特殊性能和新用途,可用来制造气体传感器、荧光体、紫外线遮蔽材料、变阻器、图像记录材料、压敏材料、压电材料、高效催化剂等,在橡胶、涂料、油墨、颜填料、催化剂、高档化妆品以及医药等领域展示出广阔的应用前

-5^ O

[0003]水热法又称为热液法,是指在特制的密闭反应器(高压釜)中,采用水溶液作为反应体系,通过对反应体系加热,产生一个高温高压的环境,加速离子反应和促进水解反应,在水溶液或蒸气流体中制备氧化物,再经过分离和热处理得到氧化物纳米粒子,可使一些在常温常压下反应速率很慢的热力学反应在水热条件下实现反应快速化。本发明以木质素磺酸盐为表面活性剂,采用水热法制备纳米氧化锌,操作条件易于控制,设备简单,制备成本低,所制产物颗粒分布均匀,颗粒性能高,粒径分散性良好,分体团聚程度较小,形貌较好,易于实现工业化。

[0004]

【发明内容】

本发明的目的是采用木质素磺酸盐为表面活性剂,通过水热法合成纳米氧化锌,工艺简单,原料易于得到,成本低廉,污染较少,适于工业化生产。

[0005]本发明的技术方案如下:

A、室温下取浓度为0.1 mol.1的锌盐溶液,按每50mL锌盐溶液加入0.05-0.2g木质素磺酸盐,搅拌溶解,在连续搅拌下,逐滴滴入2 mol.L4NaOH溶液,直至溶液恰好澄清为止;

B、将上述溶液移入高压釜中,在100-200°C温度下反应10-22h,冷却至室温;

C、将所得沉淀混合物离心分离,沉淀用去离子水清洗3遍,再用无水乙醇清洗3遍,离心分离;

D、将分离后的固体放入恒温干燥箱中干燥12h,所述恒温干燥箱的温度为60°C; 本发明的一个较优公开例中,所述的木质素磺酸盐是木质素磺酸钠。

[0006]本发明的一个较优公开例中,所用的锌盐为Zn (NO3) 2。

[0007]本发明的一个较优公开例中,步骤A中按每50mL锌盐溶液加入0.1_0.15g木质素

磺酸盐。[0008]本发明的一个较优公开例中,步骤B中在高压釜中150°C温度下反应14_18h。

[0009]本实验所用的试剂皆为分析纯,均为市售。

[0010]有益效果

本发明以木质素磺酸盐为表面活性剂,采用水热法制备纳米氧化锌,操作条件易于控制,设备简单,制备成本低,所制产物颗粒分布均匀,颗粒性能高,粒径分散性良好,分体团聚程度较小,形貌较好,易于实现工业化。

【专利附图】

【附图说明】

[0011]图1样品的X射线衍射图谱(XRD),为实施例2样品的XRD图谱。

[0012]图2样品的扫描电镜图(SEM),为实施例1样品的SEM图。

[0013]【具体实施方式】

下面结合具体实施实例对本发明做进一步说明,以使本领域技术人员更好地理解本发明,但本发明并不局限于以下实施例。

[0014]实施例1

室温下取浓度为0.1 mo l.L-1的Zn (NO3) 2溶液,按每50mL Zn (NO3) 2溶液加入0.2g木质素磺酸钠,搅拌溶解,在连续搅拌下,逐滴滴入2 mol.L4NaOH溶液,直至溶液恰好澄清为止;将上述溶液移入高压釜中,在100°C温度下反应18h,冷却至室温;将所得沉淀混合物离心分离,沉淀用去离子水清洗3遍,再用无水乙醇清洗3遍,离心分离;将分离后的固体放入恒温干燥箱中干燥12h,所述恒温干燥箱的温度为60°C。样品的SEM图如图2。

[0015]实施例2

室温下取浓度为0.1 mol.L—1的211_3)2溶液,按每501^ Zn (NO3) 2溶液加入0.1g木质素磺酸钠,搅拌溶解,在连续搅拌下,逐滴滴入2 mol.L4NaOH溶液,直至溶液恰好澄清为止;将上述溶液移入高压釜中,在100°C温度下反应22h,冷却至室温;将所得沉淀混合物离心分离,沉淀用去离子水清洗3遍,再用无水乙醇清洗3遍,离心分离;将分离后的固体放入恒温干燥箱中干燥12h,所述恒温干燥箱的温度为60°C。样品的XRD图如图1。

[0016]实施例3

室温下取浓度为0.1 mol.L—1的211_3)2溶液,按每501^ Zn (NO3) 2溶液加入0.1g木质素磺酸钠,搅拌溶解,在连续搅拌下,逐滴滴入2 mol.L4NaOH溶液,直至溶液恰好澄清为止;将上述溶液移入高压釜中,在100°C温度下反应10h,冷却至室温;将所得沉淀混合物离心分离,沉淀用去离子水清洗3遍,再用无水乙醇清洗3遍,离心分离;将分离后的固体放入恒温干燥箱中干燥12h,所述恒温干燥箱的温度为60°C。

实施例4

室温下取浓度为0.1 mol.L-1的Zn (NO3) 2溶液,按每50mL Zn (NO3) 2溶液加入0.05g木质素磺酸钠,搅拌溶解,在连续搅拌下,逐滴滴入2 mol.L4NaOH溶液,直至溶液恰好澄清为止;将上述溶液移入高压釜中,在150°C温度下反应14h,冷却至室温;将所得沉淀混合物离心分离,沉淀用去离子水清洗3遍,再用无水乙醇清洗3遍,离心分离;将分离后的固体放入恒温干燥箱中干燥12h,所述恒温干燥箱的温度为60°C。

实施例5

室温下取浓度为0.1 mol.L-1的Zn (NO3) 2溶液,按每50mLZn (NO3) 2溶液加入0.2g木质素磺酸钠,搅拌溶解,在连续搅拌下,逐滴滴入2 mol.L4NaOH溶液,直至溶液恰好澄清为止;将上述溶液移入高压釜中,在200°C温度下反应18h,冷却至室温;将所得沉淀混合物离心分离,沉淀用去离子水清洗3遍,再用无水乙醇清洗3遍,离心分离;将分离后的固体放入恒温干燥箱中干燥12h,所述恒温干燥箱的温度为60°C。

实施例6

室温下取浓度为0.1 mol.L-1的Zn(NO3)2溶液,按每50mL Zn(NO3)2溶液加入0.15g木质素磺酸钠,搅拌溶解,在连续搅拌下,逐滴滴入2 mol.L4NaOH溶液,直至溶液恰好澄清为止;将上述溶液移入高压釜中,在100°C温度下反应14h,冷却至室温;将所得沉淀混合物离心分离,沉淀用去离子水清洗3遍,再用无水乙醇清洗3遍,离心分离;将分离后的固体放入恒温干燥箱中干燥12h,所述恒温干燥箱的温度为60°C。

【权利要求】

1.一种水热法制备纳米氧化锌的方法,按下述步骤进行: A、室温下取浓度为0.1 mo 1.L—1的锌盐溶液,按每50mL锌盐溶液加入0.05-0.2g木质素磺酸盐,搅拌溶解,在连续搅拌下,逐滴滴入2 mol.L4NaOH溶液,直至溶液恰好澄清为止; B、将上述溶液移入高压釜中,在100-200°C温度下反应10-22h,冷却至室温; C、将所得沉淀混合物离心分离,沉淀用去离子水清洗3遍,再用无水乙醇清洗3遍,离心分离; D、将分离后的固体放入恒温干燥箱中干燥12h,所述恒温干燥箱的温度为60°C。

2.根据权利要求1中所述的一种采用水热法制备纳米氧化锌的方法,其特征在于所述的木质素磺酸盐是木质素磺酸钠。

3.根据权利要求1中所述的一种采用水热法制备纳米氧化锌的方法,其特征在于步骤A中所述的锌盐为Zn (NO3) 2。

4.根据权利要求1中所述的一种采用水热法制备纳米氧化锌的方法,其特征在于步骤A中按每50mL锌盐溶液·加入0.1-0.15g木质素磺酸盐。

5.根据权利要求1中所述的一种采用水热法制备纳米氧化锌的方法,其特征在于步骤B中在高压釜中150°C温度下反应14-18h。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/477357.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-06-07
下一篇2023-06-07

发表评论

登录后才能评论

评论列表(0条)

    保存