SEM和FIB之间的区别

SEM和FIB之间的区别,第1张

FIB带有SEM功能;FIB另外的功能就是微纳加工。

SEM是电子束成像原理.

FIB中带有电子束成像,也可以离子束成像(一般不用,对样品表面形貌损伤太大).

如果您只观察形貌的话,用SEM即可,FIB的电子束成像方面和SEM都一模一样.

你好,大多数人第一次听到3D打印时,他们就想到了那些老式的、常见的桌面打印机。喷墨打印机和3D打印机最大的区别是维度问题,桌面打印机是二维打印的,在平面纸张上喷涂彩色墨水,而3D打印机可以制造拿在手上的三维物体。3D打印机依据计算机指令,通过层层堆积原材料制造产品。在人类历史的大部分时间里,我们通过切割原料或通过模具成型制造新的实体物品。3D打印的技术名称是“增材制造”,这是对实际打印过程比较贴切的描述。3D打印独特的制造技术让我们能够生产前所未有的各种形状的物品。3D打印不是一种新技术,3D打印机已在制造机加工车间默默地工作了几十年。在过去的几年里,由于受到计算能力、新型设计软件、新材料、创新推动及互联网进步的推动,3D打印技术发展迅速。计算机在3D打印过程中发挥关键作用,没有计算机发出的指令,3D打印机就会瘫痪。3D打印机正常运作的前提是要输入一个设计好的电子蓝图或设计文件,它们负责告诉3D打印机在哪里放置原材料。事实上,没有连接计算机及设计文件的3D打印机是没有用处的,就像没有存储音乐的iPod。3D打印过程如下:3D打印机在设计文件指令的导引下,先喷出固体粉末或熔融的液态材料,使其固化为一个特殊的平面薄层。第一层固化后,3D打印机打印头返回,在第一层外部形成另一薄层。第二层固化后,打印头再次返回,并在第二层外部形成另一薄层。如此往复,最终薄层累积成为三维物体。3D打印机不像传统制造机器那样通过切割或模具塑造制造物品。通过层层堆积形成实体物品的方法从物理的角度扩大了数字概念的范围。对于要求具有精确的内部凹陷或互锁部分的形状设计, 3D打印机是首选的加工设备,它可以将这样的设计在实体世界中实现。3D打印的十大优势来自各个行业、具有不同背景和专业技术水平的人用类似的方式描述,3D打印帮助他们减少主要成本、时间和复杂性障碍。优势1:制造复杂物品不增加成本。就传统制造而言,物体形状越复杂,制造成本越高。对3D打印机而言,制造形状复杂的物品成本不增加,制造一个华丽的形状复杂的物品并不比打印一个简单的方块消耗更多的时间、技能或成本。制造复杂物品而不增加成本将打破传统的定价模式,并改变我们计算制造成本的方式。优势2:产品多样化不增加成本。一台3D打印机可以打印许多形状,它可以像工匠一样每次都做出不同形状的物品。传统的制造设备功能较少,做出的形状种类有限。3D打印省去了培训机械师或购置新设备的成本,一台3D打印机只需要不同的数字设计蓝图和一批新的原材料。优势3:无须组装。3D打印能使部件一体化成型。传统的大规模生产建立在组装线基础上,在现代工厂,机器生产出相同的零部件,然后由机器人或工人(甚至跨洲)组装。产品组成部件越多,组装耗费的时间和成本就越多。3D打印机通过分层制造可以同时打印一扇门及上面的配套铰链,不需要组装。省略组装就缩短了供应链,节省在劳动力和运输方面的花费。供应链越短,污染也越少。优势4:零时间交付。3D打印机可以按需打印。即时生产减少了企业的实物库存,企业可以根据客户订单使用3D打印机制造出特别的或定制的产品满足客户需求,所以新的商业模式将成为可能。如果人们所需的物品按需就近生产,零时间交付式生产能最大限度地减少长途运输的成本。优势5:设计空间无限。传统制造技术和工匠制造的产品形状有限,制造形状的能力受制于所使用的工具。例如,传统的木制车床只能制造圆形物品,轧机只能加工用铣刀组装的部件,制模机仅能制造模铸形状。3D打印机可以突破这些局限,开辟巨大的设计空间,甚至可以制作目前可能只存在于自然界的形状。优势6:零技能制造。传统工匠需要当几年学徒才能掌握所需要的技能。批量生产和计算机控制的制造机器降低了对技能的要求,然而传统的制造机器仍然需要熟练的专业人员进行机器调整和校准。3D打印机从设计文件里获得各种指示,做同样复杂的物品,3D打印机所需要的操作技能比注塑机少。非技能制造开辟了新的商业模式,并能在远程环境或极端情况下为人们提供新的生产方式。优势7:不占空间、便携制造。就单位生产空间而言,与传统制造机器相比,3D打印机的制造能力更强。例如,注塑机只能制造比自身小很多的物品,与此相反,3D打印机可以制造和其打印台一样大的物品。3D打印机调试好后,打印设备可以自由移动,打印机可以制造比自身还要大的物品。较高的单位空间生产能力使得3D打印机适合家用或办公使用,因为它们所需的物理空间小。优势8:减少废弃副产品。与传统的金属制造技术相比,3D打印机制造金属时产生较少的副产品。传统金属加工的浪费量惊人,90%的金属原材料被丢弃在工厂车间里。3D打印制造金属时浪费量减少。随着打印材料的进步,“净成形”制造可能成为更环保的加工方式。优势9:材料无限组合。对当今的制造机器而言,将不同原材料结合成单一产品是件难事,因为传统的制造机器在切割或模具成型过程中不能轻易地将多种原材料融合在一起。

聚焦离子束扫描电镜双束系统(FIB-SEM)是在SEM的基础上增加了聚焦离子束镜筒的双束系统,同时具备微纳加工和成像的功能,广泛应用于科学研究和半导体芯片研发等多个领域。本文记录一下FIB-SEM在材料研究中的应用。

以目前实验室配有的FIB-SEM的型号是蔡司的Crossbeam 540为例进行如下分析,离子束最高成像分辨率为3nm,电子束最高分辨率为0.9nm。该系统的主要部件及功能如下:

1.离子束: 溅射(切割、抛光、刻蚀);刻蚀最小线宽10nm,切片最薄3nm。 

2.电子束 : 成像和实时观察

3.GIS(气体注入系统): 沉积和辅助刻蚀;五种气体:Pt、W、SiO2、Au、XeF2(增强刻蚀SiO2)

4.纳米机械手:  转移样品 

5.EDS: 成分定量和分布

6.EBSD : 微区晶向及晶粒分布

7.Loadlock(样品预抽室): 快速进样,进样时间只需~1min

由上述FIB-SEM的一个部件或多个部件联合使用,可以实现在材料研究中的多种应用,具体应用实例如下:

图2a和b分别是梳子形状的CdS微米线的光学显微镜和扫描电镜照片,从光学显微镜照片可以看出在CdS微米线节点处内部含有其他物质,但无法确定是什么材料和内部形貌。利用FIB-SEM在节点处定点切割截面,然后对截面成像和做EDS mapping,如图2c、d、e和f所示,可以很直观的得到在CdS微米线的节点处内部含有Sn球。

FIB-SEM制备TEM样品的常规步骤如图3所示,主要有以下几步:

1)在样品感兴趣位置沉积pt保护层

2)在感兴趣区域的两侧挖大坑,得到只有约1微米厚的薄片

3)对薄片进行U-cut,将薄片底部和一侧完全切断

4)缓慢移下纳米机械手,轻轻接触薄片悬空的一端后,沉积pt将薄片和纳米机械手焊接牢固,然后切断薄片另一侧,缓慢升起纳米机械手即可提出薄片

5)移动样品台和纳米机械手,使薄片与铜网(放置TEM样品用)轻轻接触,然后沉积pt将薄片和铜网焊接牢固,将薄片和纳米机械手连接的一端切断,移开纳米机械手,转移完成

6)最后一步为减薄和清洗,先用大加速电压离子束将薄片减薄至150nm左右,再利用低电压离子束将其减薄至最终厚度(普通TEM样品<100nm,高分辨TEM样品50nm左右,球差TEM样品<50nm)

一种如图4a所示的MoS2场效应管,需要确定实际器件中MoS2的层数及栅极(Ag纳米线)和MoS2之间的距离。利用FIB-SEM可以准确的在MoS2场效应管的沟道位置,垂直于Ag纳米线方向,提出一个薄片,并对其进行减薄,制备成截面透射样。在TEM下即可得到MoS2的层数为14层(图4c), Ag纳米线和MoS2之间的距离为30nm(图4b)。

图5是一种锰酸锂材料的STEM像,该样品是由FIB-SEM制备,图中可以看到清晰的原子像。这表明FIB-SEM制备的该球差透射样非常薄并且有很少的损伤层。

FIB-SEM还可以进行微纳图形的加工。

图6a 是FIB-SEM在Au/SiO2上制备的光栅,光栅周期为150nm,光栅开口为75nm。

图6b 是利用FIB-SEM在Mo/石英上做的切仑科夫辐射源针尖,针尖曲率半径为17nm。

图6c 是在Au膜上加工的三维对称结构蜘蛛网。

图6d 是FIB-SEM在硅上刻蚀的贺新年图案,图中最小细节尺寸仅有25nm。

FIB-SEM可以对材料进行切片式的形貌和成分三维重构,揭示材料的内部三维结构。大概过程如图7a所示, FIB切掉一定厚度的样品,SEM拍一张照片,重复此过程,连续拍上百张照片,然后将上百张切片照片重构出三维形貌。图7b是一种多孔材料内部3×5×2um范围的三维重构结果,其实验数据是利用FIB-SEM采集,三维重构是利用Avizo软件得到,其分辩率可达纳米级,展示了内部孔隙的三维空间分布,并可以计算出孔隙的半径大小、体积及曲率等参数。

利用FIB-SEM配有的纳米机械手及配合使用离子束沉积Pt,可以实现微米材料的转移,即把某种材料从一个位置(衬底)转移到特定位置(衬底),并固定牢固。图8是把四针氧化锌微米线从硅片转移到两电极的沟道之间,从而制备成两个微米线间距只有1um的特殊器件。

最后,FIB-SEM还有很多其他的应用,例如三维原子探针样品制备,芯片线路修改等。总之FIB-SEM是材料研究中一个非常重要的手段。

不积珪步,无以至千里;不积细流,无以成江海。做好每一份工作,都需要坚持不懈的学习。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/477913.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-06-08
下一篇2023-06-08

发表评论

登录后才能评论

评论列表(0条)

    保存