(BN)x的类金刚石结构是怎样的

(BN)x的类金刚石结构是怎样的,第1张

你知道金刚石的结构吧。

金刚石中每个碳原子周围连有四个碳原子,这四个碳原子构成四面体结构。

同样的,在(BN)x中,每个B周围有四个N原子,这四个N原子构成四面体结构。9这四个键中,有三个是普通共价键,另外一个是配位键(即由N原子单方面提供一对电子与B原子公用)。每个N原子周围连有四个B原子,同样构成四面体结构,同样是有三个普通共价键和一个配位键。

或者你可以想象成每个N原子失去了一个电子形成N+,每个B原子得到一个电子形成B-。这样两种原子都有与C相同的电子层结构。然后两种原子交错着按照金刚石结构排列(由于同性离子相斥,所以要交错排列)。

求采纳,谢谢。

补充:现在没尺,画不标准。明天传图。先告诉你方法。

用铅笔画出一个4*4*4的正方体(有立体感的)。再用铅笔将其划分为8个2*2*2的小正方体。然后以某一个顶点为原点。在大正方体的12条棱的棱心以及正方体的体心用签字笔画上黑球代表N原子。再在上面两个相对的小正方体的体心画白球代表B原子再在下面一层与上面两个正方体刚好错开的两个正方体的体心画上B原子。用签字笔连起相邻的白球和黑球,再擦去铅笔画的框架,就可以看清楚了。

图像观察法是珠宝玉石材料无损检测中使用最广泛的方法。常用的仪器是各类放大镜,宝石显微镜(倍率为45~75,带暗场、明场等照明功能),偏光显微镜以及其他低倍率、功能单一的显微镜,超景深显微镜等。

(一)宝石显微镜

宝石显微镜是用来观测宝石表面及内部特征最常用的仪器,对彩色宝石产地特征的观察和信息采集具有最重要意义。

宝石显微镜主要由以下几个部件组成:

(1)光学系统(透镜系统),包括目镜、物镜等。

(2)照明系统,包括底光源、顶光源、光量强度调节按钮等。

(3)机械系统,包括支架、宝石夹、焦距调节旋钮等。

图2-1为直立式宝石显微镜的原理及结构图。

图2-1 直立式宝石显微镜的工作原理及结构图

宝石显微镜的照明方式通常有以下几种:

(1)暗域照明:即光源不直接照射到宝石上,是最常用的一种照明方式,可观察和拍摄宝石内部的各种矿物包体和生长特征。

(2)亮域照明:即光源直接照射到宝石上,有利于流体包体、色带、生长纹和低突起包体的观察和拍摄。

(3)斜向照明:外界光源调节的范围可从水平方向0°到垂直方向90°,如图2-1中弧线范围内为斜向照明。薄膜、裂隙及超薄的流体包体在斜向照明条件下可出现明亮的干涉色。当外界光源位于水平方向(即0°)时,细窄的光束直接由宝石侧面照入,即为水平照明,由上往下观察宝石时,宝石内的针点状晶体、助溶剂及气泡会变得明亮且突出。

图2-2 不同照明条件下卢旺达蓝宝石内部特征对比

(4)偏光照明:在亮域照明的条件下,加上偏光片,产生偏光或正交偏光,有利于观察宝石内部的应力分布、双折射现象、晶格缺陷(如双晶)、生长特征、多色性等。

(5)点光照明:将点光源照射到宝石的局部区域,有利于观察宝石表面及近表面的包体特征、针点状包体(如金红石针),并可进一步观察流体包体中的气态、液态甚至固态包体的显微特征,有助于更清楚地观察弧形线条或其他结构。

(6)阴影照明:光源由宝石下方直接照入,光源与宝石之间用一片不透光的薄板部分遮挡,可提高内含物的立体效果,适合观察生长结构,如弧形线条和双晶等。

(7)漫射照明:打开遮光板,将一张漫射板、白色面纸或其他半透明物置于光源上方,由下往上射入宝石,使光线减弱并扩散,可协助观察色域或色带。

(8)反射照明:光源由上方照入产生反射光使表面特征更明显。

综上所述,不同的照明方式适合于观察不同的内、外部特征,因此,合适的照明方式对信息的采集至关重要。同一包体特征,在不同的照明方式下,其清晰度、美观程度及立体感等都有所不同。如图2-2所示,同一蓝宝石样品在亮域照明下可见生长环带,暗域照明下见大量的微细包体和聚片双晶,偏光照明下能见清晰的双晶纹。

利用宝石显微镜可观察宝石内部的缺陷特征、生长特征、溶解特征等显微特征,从而大致确定彩色宝石中具有产地意义的特征。如祖母绿中的三相包体,它仅在哥伦比亚、尼日利亚等少数几个地方出产的祖母绿中可以见到(图2-3)马达加斯加蓝宝石中常见大量橙红色透明浑圆—拉长状的金红石包体,它是该产地蓝宝石的典型包体特征之一,如图2-4所示。

图2-3 尼日利亚祖母绿晶体中常见三相包体(50×)

图2-4 马达加斯加蓝宝石晶体中常见大量的橙红色拉长状金红石包体(05×)

(二)高倍率光学显微镜

由于宝石显微镜放大倍数及分辨率不是很高,为找出晶体内、外部一些微细特征差异,需要使用高倍率光学显微镜。

1.超景深三维显微系统

超景深三维显微系统是用于高倍率观察晶体内部及表面三维结构的数码显微镜。该显微系统的照明是嵌入式的,主机中的光源发光,光线通过光纤电缆从镜头内部照明物体。嵌入式照明能根据样品检测距离和镜头视野提供最佳的光照,无需复杂的调节就能轻松获得最佳照明效果(图2-5)。

图2-5 超景深三维显微镜

因为有超景深或共聚焦功能,这些高倍率高分辨率显微镜可用于观察表面粗糙高低不平的珠宝材料,且可以半定量测量样品三维尺寸,可以加深科研人员对材料表面微形貌特征、颜色分布特征等的理解。超景深三维显微系统在宝石学中的应用主要是观察和拍摄宝玉石表面生长和溶解特征、晶体内部包体的三维形态及其分布等,其视频拍摄功能可以观察和记录气液包体的变化特征。

2.微分干涉显微镜

微分干涉显微镜(Diferential Interference Contrast Microscope)是一种特殊形式的干涉显微镜,通常被用于观察物体内由于各点的折射率不同,光通过时造成光程差不同的现象。只分开1μm或者更小距离的两束相干光通过标本产生干涉后,标本内邻近两点的光程差经显微镜中特殊的光学系统转变为振幅(光强度)的变化,从而可观察到标本内细微的结构,所以称为微分干涉显微镜。用微分干涉法观察样品,会看到宝石显微镜下所看不到的许多细节,明场下难以区分的一些结构细节或缺陷,如凹凸面、裂隙、孔洞等可通过微分干涉使得反差增强而容易观察,微分干涉法对于具光滑表面的珠宝材料微细结构的观察很有效。如图2-6所示,金刚石晶体表面倒三角蚀像的微细结构能清晰地通过干涉色的差异呈现出来。

图2-6 钻石八面体表面溶蚀坑(50×)

(三)电子显微镜

光学显微镜由于受到光的波长的限制,绝大多数情况下无法看清尺寸小于波长的微细结构。电子线的波长远小于可见光和紫外光,电子显微镜的分辨率可达纳米级甚至原子尺寸级。采集彩色宝石产地鉴别信息时,现阶段有时会使用扫描电子显微镜(SEM)和透射电子显微镜(TEM)以获取样品表面及晶体内部超微细结构特征。

与光学显微镜相比,扫描电子显微镜具有图像放大倍率变化范围大、分辨率高、景深大,以及获取观察物质的化学元素组成等优点。扫描电子显微镜附带的能谱仪可帮助我们得到所观察区域的化学成分信息,有助于鉴别宝石的产地。另外,其电子阴极发光功能可帮助我们观察晶体的生长特征等。

透射电子显微镜具有分辨率高,可观察晶体内部晶格缺陷,如位错、双晶,以及获得观察区域的电子衍射图像等优点和功能,是采集珠宝内部微米级以下超细微结构信息的主要手段和仪器。虽然透射电子显微镜在宝石学上的应用受到超薄样品制作困难及破坏性特点的限制,目前仅限于学术研究,但作为矿物学、材料学研究的重要手段,在彩色宝石产地特征采集中可能会得到应用。

(四)发光特征观察

彩色宝石的主要品种,如红宝石、蓝宝石、祖母绿,发光特征明显,其中有些具发光性质的品种在工业上常常作为重要的激光晶体而得到应用。矿物受到外界能量(如紫外线、X射线和放射性射线照射等)激发时,能够发出可见光,利用宝石在某种特定光源照射下产生的发光现象,可推测珠宝玉石的成分、结构及某些宝石的成因。发光图像分析方法作为珠宝玉石检测常用的技术之一,具有非常明显的优点:仪器操作简单,分析速度快,图像结果直观等。在彩色宝石产地鉴别应用上,目前还处于数据和资料积累阶段,今后有可能会得到应用。

关于宝石矿物发光原理的探讨目前比较统一的观点是:发光体中赋存有激活剂原子(异价类质同象)和由此产生的晶体缺陷导致矿物发光。晶体缺陷的存在是矿物发光的基础。具有发光性的宝石矿物都含有不等量的阴、阳离子类质同象组分,这些类质同象组分与主要阴阳离子的电价不同,这就必然产生晶格中的电价不平衡,或者产生各类空穴或电子心以及施主和受主能级。当电子受激发吸收能量时由低能级向高能级跃迁,反之电子由高能级向低能级跃迁则会释放光量子,也就是发光,施主和受主能级间的跃迁距离不同导致发出不同颜色的光。

在珠宝玉石检测和研究领域,用于观察宝石发光特征的仪器主要有紫外荧光灯、阴极发光仪和钻石观察仪。

1.阴极发光仪CL

阴极发光是物质在电子束轰击下产生的一种发光现象。从阴极射线管发出具有较高能量的电子束激发宝石矿物的表面,使电能转化为光辐射而产生的发光现象,称为阴极发光。

阴极发光仪主要用来观察真空中的样品受电子束激发产生可见光的现象。阴极发光仪主要由样品室、电子枪、真空系统、高压控制电源盒、低压控制电源所组成。它的优点在于不需要制样,可以用于观察几乎所有常见的宝石材料。20世纪70年代,商业用途的阴极发光仪开始在市场上出现,该技术才开始逐渐被应用于宝石学研究领域。

阴极发光仪包括发射光颜色的观察(或观察颜色分布)、发射光谱的解释、发射光谱的定量测量等几项功能。阴极发光仪可以对样品的颜色或亮度的空间变化成像,也可以收集紫外—可见光—近红外区的发光光谱。阴极发光光谱测试时,样品需置于真空环境下,这样可使样品信息收集时间延长。

阴极发光仪在矿物研究中应用广泛,在宝石检测中主要用于区分天然钻石与合成钻石,分析翡翠的结构特征等。利用阴极发光的颜色、强度及其显微分布特征和激发条件,还可以综合研究宝石材料中的缺陷、杂质状态及其生长条件,从而在彩色宝石的产地鉴别研究中得到应用,如不同产地的祖母绿,其阴极发光图像所显示的荧光颜色、强度及图案存在一些细微的差异。

2.钻石观察仪(DiamondViewTM)

钻石观察仪(DiamondViewTM)即钻石生长结构特征荧光成像鉴定仪(图2-7),是戴比尔斯集团钻石贸易公司研制开发的,基本原理是利用宝石在波长小于230nm紫外光下表面的发光性。最初利用生长结构特征来鉴别钻石及合成钻石。事实上,DiamondViewTM也可以应用于其他珠宝玉石的检测(图2-8)。

图2-7 钻石观察仪(DiamondViewTM)

图2-8 DiamondViewTM下可见红宝石内的生长条带和裂隙(10×)

DiamondViewTM在使用时可将具光滑表面的样品置于紫外光下,拍摄并记录其紫外荧光图样。不同品种的宝石具有不同的发光特征,不同产地的同一品种宝石其荧光特性(如荧光强度)也存在差异。对于钻石而言,可将其荧光图像直接与DiamondViewTM软件中存有的各种天然和合成钻石的紫外荧光图样进行对比,从而得出结论。

原则上,把石墨改造成金刚石所需的压力和温度范围是比较广的,所以用於合成金刚石的高温装置和方法也很多。目前工业用的生产方式是以「高压静态法」最为普遍,所谓静态技术装置,就是所产生的高压是缓慢上升的,升到一定压力值以后,可以稳定保持一段时间。它与「高压爆炸法」又有不同,后者是从升压到降压整个过程,时间非常短促,高压瞬间产生也瞬间消失。还有一个不同之处是:「高压静态法」是在金属催化剂的帮助下,将石墨转化为金刚石,因此温度和压力可以降低许多(即前面所提的熔剂-触媒法)。「金属催化剂」是扮演什麼样的角色呢?它好比是个「建筑工程师」,能帮助把石墨结构修改、重建成金刚石结构。因为金属催化剂在高温高压下是碳的熔剂,也就是能把碳原子间的结合力扯断,把石墨熔解,为碳原子重新结合成金刚石创造有力的条件。因此作为触媒的本身晶体结构,也是非常的重要,它是影响碳原子能否重新结合成金刚石的重要因素之一。而且,金属催化剂还可使高压静态法的压力,降低到5至6万大气压,温度降低到1500℃至2000℃,节省许多的经济成本。

在此,我们忍不住要问,天然金钢石又是如何形成的呢?形成的地质条件又是哪些呢?它是地球内部岩浆中的含碳物质,在地球深处中的高温和高压作用之下所生成的。这就给了我们很好的启示,只要我们模拟天然生成金刚石的高温、高压和生长条件,就可以人工合成出人造的金刚石。那麼合成的压力和温度需要多大呢?地属深度不同,其温度和压力自然也有不同。基本上。地层越深,压力和温度越高。例如,地表至地球中心约有6×106公尺深,在地心里的压力估计大约是3.3×106大气压,温度可达6000℃~7000℃。实验证明,只要我们设计的高温高压装置,能达到地球1000公尺以下的1500℃~2000℃,压力是4~5万大气压,在催化剂的作用下,就能把石墨构造改造成金刚石构造,使得乌漆麻黑的石墨变成灿烂夺目的钻石。

人造金刚石的未来发展动向

随著人们对金刚石性质的认识日益深刻,加上在冶金、地质钻探、机械、光学仪器加工、电子工业和航空技术等方面的广泛应用,使得金刚石不论是在经济建设、生产技术和国防工业上,都扮演著举足轻重的角色。

想要有效地提高人造金刚石的质与量,超高压技术的研究是一个重要因素。从物质结构转化的角度来看,不但要有超高压技术,更需要高温高压设备,所产生的温度压力能够稳定且可被准确测量才行。因为只有在十分高且稳定的压力之下,物质的性质才会产生惊人的变化,新的材料及超硬材料才会出现。正因如此,目前世界各国都十分重视「高压物理」的研究工作。压力已由原先的几万大气压,提升到几百万大气压,甚至可望达到千万大气压。随著超高压技术的发展,将使人造金刚石在晶形、颗粒、产量与质料等方面产生重大突破,且让我们拭目以待。

苏明德任职於清华大学化学研究所

繁体字 ...比较累 不好意思

回答者: admin0524 - 高级魔法师 五级 2006-7-6 16:22

检举【摘要】人工制造钻石并非天方夜谭,只要掌握科学原理,清水照样也可以变鸡汤。

据报载(民国87年12月12日联合报):「台北市警局刑警大队侦破利用俗称「摩星宝石」人造钻石的合成碳化矽石充当真钻石,而向当铺典当的诈骗集团。据行家向警方表示,「摩星宝石」是由美国公司研制成功,属於最新型科技,硬度值高达9.5,高於苏联钻(二氧化锆石)的硬度值9.0,只低於真钻石硬度值10.0。它的最大特点是将「摩星宝石」以测试钻石真伪的测钻笔测试,均呈真钻反应。就宝石学而言,它的特性非常接近钻石,色泽亦像钻石,没有仔细检查常会误以为是真钻。」

或许有人会问,到底什麼是「摩星宝石」?它的成分和结构又是什麼?这牵涉到人家的商业机密,我们目前无法探知。但笔者在这里倒是愿意从科学的角度,来介绍人造钻石的制程及其基本特性。

金刚石的物理特性

首先,必须指出钻石(学名为「金刚石」)和宝石不同。自然界中的宝石以氧化铝(Al2O3)为主要成分,同时也含有微量的金属氧化物(如:氧化铬);金属氧化物可以使宝石具有各种颜色。

反之,金刚石是碳的结晶体,其基本特点是具有规则的几何形状。根据金刚石的晶体型态(图一)可以分为单晶体、连生体和聚晶体。并且还可以进一步细分为六面体、八面体、十二面体等等。原则上,人造金刚石比天然金刚石具有较明晰的晶体及稜角,晶面也较为平整。

由於晶体内所含杂质不同,使得金刚石具有各式各样的颜色:如淡黄、黄绿、暗灰,甚至黑色等。通常晶形完整,透明度高的金刚石品质较好,比重一般是介於每立方公分3.15~3.52克之间。完全无杂质且结晶完整的晶体,其比重最大(即每立方公分3.52克)。一般来说,天然金刚石的比重随著自身的杂质含量而有所不同,也就是随著金刚石颜色不同而异。无色及绿色的金刚石比重较低,青蓝色、玫瑰色其次,澄黄色金刚石的比重最高。而人造金刚石的比重,还会因制作过程的压力、温度的改变,以及保温时间长短的不同,其色泽和比重也不相同。

有的金刚石在紫外线、X射线等的照射下,晶莹夺目。例如在紫外线照射下还会发光,金刚石可发出浅蓝色、橙黄、粉红等各种美丽的光彩。经研究证明,金刚石的发光特性与它的外形无关,而与它的内部构造与晶体结构缺陷有关。因此,我们可以根据金刚石不同的发光特性,来研究和分析金刚石的内部结构、杂质及晶体缺陷。一般而言,天然金刚石的主要杂质元素为氮(最高含量为0.2%)和铝。

金刚石质地较脆且硬,在目前已发现的物质中,金钢石的硬度可说是「冠军」。它在莫氏硬度表中(就是以十种矿物的硬度,从最软到最硬排成十级,做为比较硬度的标准,见表一),排在最硬的一级,亦即第10级。金刚石的硬度是石墨的1000倍。简单的说,金刚石是地球上最硬的物质(图二)。这或许可从一个小故事里获得证实。八十年前,苏俄沙皇尼古拉斯二世一家人,遭共产党行刑队处决,刽子手一枪又一枪地向皇室女族发射,她们依然在呻吟翻滚,刽子手大惑不解?有些子弹竟然从她们身上反弹到墙上。后来才知,原来她们在紧身胸衣的衬里内塞了八公斤多的钻石。她们的痛苦因为这些钻石而延长了。

也正因为如此,使得金刚石在工业用途上扮演著相当重要的角色。举例来说,因为金刚石的硬度最高,所以它可以刻画其他任何物质。因此,若把金刚石用在采矿的钻头上,可使钻探技术和速度大大地提高。此外,工业上用的各种刀具、光学玻璃与砂轮等,甚至人造假牙,都要籍助金刚石来切割、研磨和加工。金刚石可以说是现代科技工业的生力军。

理想的金刚石是不导电的绝缘体。根据理论计算,理想的金刚石具有1070欧姆公分的电阻率(电阻率是指长1公分,截面积为1平方公分的电阻值,亦是衡量物质导电能力的一个物理量)。可是近年来发现了具有半导体性能的金刚石,此种金刚石含有其他成分的杂质,因而大大降低了它的电阻率,降至1014~1015欧姆公分,所以成了半导体。

金刚石的另一项优点,就是耐热性高-在空气中加热850℃~1000℃左右才会燃烧碳化;即使金刚石在纯氧中,也须加热至720℃~800℃才可以燃烧。半导体广泛使用的锗二极管只耐热300℃,矽二极管可耐热400℃。因此,我们若用半导体金刚石来制作晶体三级极和二极管,可以想见,它的性能绝对比锗、矽晶体来得好,而使用寿命也将大幅提高。化学的强酸和强碱对金刚石也起不了作用。虽是如此,金刚石仍可溶於熔融的硝酸钠、硝酸钾和碳酸钠中。

金刚石还有一个引人注意的特点,那就是它具有很高的导热率。导热率是衡量物质散热性能的一种参考量。导热率越高代表导热越快,散热的性能越好。例如,在室温下,铜的导热率为每公分每秒4瓦,而金刚石的导热率为每公分每秒20~24瓦,是铜的5~6倍。随著温度的升高,在40℃以后,铜的导热性能远远落后於天然钻石和人造钻石。尤其是人造钻石,它的导热性能往往比天然钻石还要优良。这暗示著,金刚石在电子工业中又可大显身手,因为某些零件本身就需要散热强的材料来做。工业上,常用金刚石做为固体微波器材和半导体雷射器材的散热片。此外,人们也用金刚石做为航空工业的温度探测零件。

当快速粒子(如光子或放射性粒子)撞击金刚石时,就会在金刚石的外接电路上,出现脉冲电流,这说明了金刚石具有光导电性。用光照射而使半导体的导电率(导电率=l/电阻率)增加,这种现象就称做「光导电性」。利用金刚石的这种性质,可应用在导电性晶体计数器上。又因金刚石在放射粒子的照射下,具有发光的特性,所以还可把它应用在闪烁计数器上。可以预期,将这种器件用在原子能的研究上,会比其他晶体性能来得好。因此,科学家将某些金刚石制造成很小的计数器,做为检测放射线能量的探射器,用以检验α、β粒子和γ射线,并广泛用於医学、地球物理和原子能研究工作上。

为什么需要人造金刚石?

由上文我们得知金刚石晶体光怪陆离,美丽夺目,具有多项优点,像是硬度最大、比热低、导热性能强、高温稳定性佳、机械强度大、抗腐蚀性能强和半导体功能等等。

科学家之所以想去制造人工合成的金刚石,理由非常简单,那就是天然金刚石的来源非常有限,而且采勘开采都十分困难。天然金刚石矿藏的含金刚石量甚微,即使是蕴藏丰富的所谓「富矿」,其含量也仅仅是百万分之一到千万分之一。换句话说,要开采处理数吨重的矿石,才能获得1克拉(l克拉=0.2公克)金刚石。

获得天然金刚石是如此困难,再加上科技发展的进步,对金刚石的需求与日遽增,仅靠开采天然矿所得,实在是难以满足日益增长的需要。於是,人们就想用人工合成的办法,来生产人造金刚石。科学家对人造金刚石的研究,已有百年以上的历史,直至1953年才成功合成出人造金刚石。从此,材料工业里又开辟了另一个新天地。

人造金刚石的由来

自从人造金刚石制造成功之后,人造金刚石工业立刻得到欧美先进国家的高度重视,自1960年代起,人造金刚石产量以每年平均40%的成长率高速发展,估计现在每年人造金刚石产量有几亿克拉之多。那麼人造金刚石是怎麼制造出来的呢?

事实上,或许我们就可以在家中自行制造人工钻石。请准备一些煤当燃料,而普通铅笔所含的石墨就是制造钻石的基本原料(图三),还要准备一个能密闭的钢桶。一切准备妥当,请把炉子生起火,石墨和炸药放入钢桶内,旋紧桶盖便投入炉子里,然后你可以先去散散步。这时的你,担心房子会炸个稀烂吧?不过,这要看你的运气和钢桶壁的强度,但是请不要这么心急就想看一眼你手制的宝物。钻石结晶是需要时间的。炉火至少要燃烧一段时间,然后就可以打开钢桶的盖子。

制作人造钻石一点也不是天方夜谭。钻石真的可以从煤炭或者石墨制造出来,有什麼根据呢?

早在两百多年前,近代化学奠基者--法国的拉瓦锡首先提到:金刚石和石墨都是由碳元素组成的一对亲兄弟。可是这两兄弟的个性却完全不同。石墨外表黝黑,质地软得一折即断。相反的,金刚石外表光泽灿烂夺目,且是世界上最硬的物质。为什麼都是同根生,差异却如此大呢?

原因就在於它们自身的结构不一样。在石墨和金刚石中,碳原子的结合方式及排列方式各不相同。在化学世界里,一种元素若拥有几种不同的晶体结构,这种现象就称为「同素异形」,像是磷、氧及硫等等都有这种特性。正因「同素异形」主要是指晶体结构的不同,因而其物理性质或化学性质也会有所不同,比如会具有不同的颜色、密度、硬度、溶解度,以及在化学反应上表现不同的本领等等。碳的「同素异形」体只有两种,即前面所说的石墨和金刚石。

以石墨为例,石墨的结构是成层状排列,像千层蛋糕一样,一层层叠加起来。从图四中我们可以看到,它的每一层又以正六边形连结成平面的网。在平面网上,六边形的每边之长(即每个碳原子间的距离)篇1.42Å(Å称为埃,l埃=10-10公分)。碳原子和碳原子间的结合力,是靠相互贡献来的电子(共用电子)对所形成的。共用电子对把两个碳原子结合得很牢固,我们把这共用电子对所形成的束缚力称为「共价键」,而各个平行层与层之间的距离为3.35Å。几乎两倍於每平面层中两个碳原子间的距离,正因如此,层与层之间的结合力较弱。而层与层之间的结合力,是由各碳原子提供一个电子在每一平面层上自由移动所形成的,这些运动的电子并没有把碳原子连结得很牢固,容易散开来,故这种结合力又称为「金属键力」。也由於电子可以在层与层之间自由移动,所以石墨可以导电。因此,石墨本身结构的最大特点,就是由牢固的「共价键」(专业术语而言,即σ键)和不牢固的「金属键」(即π键)之双重键型所组成的。如此一来,使得石墨的层与层之间容易滑动,甚至断开,而使石墨的质地变得很柔软。但是,由於同一平面层上的碳原子间结合力很强(共价键之故),极难破坏,所以石墨的熔点较高,且化学性质也较稳定。

石墨的晶体结构也决定著它的物理特性。对於一个单晶体而言,石墨可看作是一个二维的金属。也就是说,石墨晶体中由於有两种不同的结合力,使得其晶体层的平行方向和垂直方向的导电性及导热性产生了差异,这种现象称之为「各向异性」。根据研究指出,其二个方向性能的数值比约为3~4比l。但由於一般石墨的晶体分布甚为杂乱,因而整体来看,就显不出很大的方向性。

在十六世纪中叶,欧洲的石墨产量颇丰,开采容易,而且有人发现这种矿物能留下很清晰的痕迹,於是便拿来当作书写与绘图的工具。事实上,石墨的英又叫做“graphite”,就是源自於希腊文的「书写」,即“graphein”到了十八世纪中叶,业者经过多次的研发,懂得混合石墨粉与黏土,制造出笔质稳定,但有更多不同硬度以及黑度的一系列铅笔(所以铅笔里并不含铅)。换言之,调整黏土与石墨粉的比例,可以控制笔心的硬度与黑度。黏土的比例越高,笔心越硬;相反的,石墨的比例越高,表示笔心越软。通常是以阿拉伯数字来区分笔心硬度:数字越大,硬度随之递减。或用B来代表黑(black),而用H来代表硬(hard); B字母重复越多,就代表笔心越黑;相对的,H字母重复越多,便代表笔心越硬。若是看到铅笔上印有“HB”字样,就表示它是一种「有点黑,又不太黑;有点硬,又不太硬」的铅笔。

金刚石就不一样了。每个金刚石的晶胞(「晶胞。是构成金刚石的最小单位,犹如生物组织的「细胞」)中有四个碳原子,各个碳原子分布在正四面体的四个顶角上(图五),且碳原子和碳原子间是以牢固的共价键相连接。许许多多这样大小、形状相同的晶胞,有规则地紧密连接在一起,形成如图六结构的重复体。且在金刚石晶体中,每个碳原子与它邻近的四个共价碳原子是等距离的,长度为1.54Å,这和有机化合物中的碳原子间的单键距离相同。这样安排的碳原子具有很高的结合能,因为各碳原子间的距离相等,使得金刚石晶体具有无隙可乘的结构,拥有物质中最高的力学强度,因而形成金刚石晶体坚硬的特性。因为已知石墨的比重是立方公分2.26克,而金刚石的比重则是介於立方公分3.15~3.52克之间,可见碳原子在金刚石里要比在石墨里来得密实许多。从上述介绍中,我们可以清楚了解到,物质的硬度取决於他们原子之间的键结方向和键能强度。

看来问题很清楚,只要把石墨的结构改建成金刚石的结构,人造金刚石的问题就算解决了。从那里改建起呢?从它们结构上的差别来看,必须把石墨里层与层间不牢固的结合力(即金属键力)拉断或变动,并且同时也将六角平面上各碳原子间的结合力(即共价键力)和结合方式来个「大搬家」,使它们之间的结合按照金刚石的形式和要求,有规则地结合在一起,便成为金刚石晶体了。

那麼,用什麼手段来改建石墨的结构,使其成为金刚石呢?目前所知,人工合成金刚石的方法多达十余种。按晶体生长的特性,基本上可归纳为直接法、熔剂-触媒法和外延法三种。所谓「直接法」,顾名思义就是使碳质原料直接从固态转变成金刚石;方法上,可分为「瞬间超高温高压法」及「动态冲击法」。所谓「熔剂-触媒法」,就是利用某些金属及其合金制成催化剂,利用比「直接法」更低的压力,将石墨碳质原料转化为金刚石。而「外延法」,就是先热解石墨,使碳质原料中含有四价的碳原子(专业术语而言,指的是sp3型的碳原子)或基团先分离出来,作为生成金刚石的碳源。

由於金刚石的生长机制颇为复杂,在此只能作简略的定性描述。我们从热力学观点出发:热力学的基本原理告诉我们,在改变一定的压力和温度条件下,许多物质的结构将发生变化。特别是在超高压和超高温的条件下,物质将发生重大变化。例如,在极高压下,能把气态的氢压缩成固态的氢,甚至成为金属氢(成为固体,且具有导电、传热的功能)。高压也可把非导电的绝缘体变成可导电的导体。另一方面,也从动力学出发:石墨碳质原料能否成功地转变成金刚石,还必须取决於「石墨→金刚石」的相变速率。当金刚石的生核率和长大速率,同时处於最大值时,则石墨转变为金刚石的相变速率最大。也就是所谓的活化能最小,反应速率最大。

一般来说,我们大多采用高温高压法,将石墨转变成金刚石。高温的目的,是为了提供必要的热能,使得石墨晶格里的碳原子,做大幅度热振动,进而摆脱束缚,拆散碳原子群。同时利用高压方式,藉著压缩,将这些分散开的碳原子,重新紧密地挤在一起(压缩成如图五所示),原子间的距离缩短,彼此间的联系也就会愈坚固,就是软的石墨变成硬的金刚石。

原则上,把石墨改造成金刚石所需的压力和温度范围是比较广的,所以用於合成金刚石的高温装置和方法也很多。目前工业用的生产方式是以「高压静态法」最为普遍,所谓静态技术装置,就是所产生的高压是缓慢上升的,升到一定压力值以后,可以稳定保持一段时间。它与「高压爆炸法」又有不同,后者是从升压到降压整个过程,时间非常短促,高压瞬间产生也瞬间消失。还有一个不同之处是:「高压静态法」是在金属催化剂的帮助下,将石墨转化为金刚石,因此温度和压力可以降低许多(即前面所提的熔剂-触媒法)。「金属催化剂」是扮演什麼样的角色呢?它好比是个「建筑工程师」,能帮助把石墨结构修改、重建成金刚石结构。因为金属催化剂在高温高压下是碳的熔剂,也就是能把碳原子间的结合力扯断,把石墨熔解,为碳原子重新结合成金刚石创造有力的条件。因此作为触媒的本身晶体结构,也是非常的重要,它是影响碳原子能否重新结合成金刚石的重要因素之一。而且,金属催化剂还可使高压静态法的压力,降低到5至6万大气压,温度降低到1500℃至2000℃,节省许多的经济成本。

在此,我们忍不住要问,天然金钢石又是如何形成的呢?形成的地质条件又是哪些呢?它是地球内部岩浆中的含碳物质,在地球深处中的高温和高压作用之下所生成的。这就给了我们很好的启示,只要我们模拟天然生成金刚石的高温、高压和生长条件,就可以人工合成出人造的金刚石。那麼合成的压力和温度需要多大呢?地属深度不同,其温度和压力自然也有不同。基本上。地层越深,压力和温度越高。例如,地表至地球中心约有6×106公尺深,在地心里的压力估计大约是3.3×106大气压,温度可达6000℃~7000℃。实验证明,只要我们设计的高温高压装置,能达到地球1000公尺以下的1500℃~2000℃,压力是4~5万大气压,在催化剂的作用下,就能把石墨构造改造成金刚石构造,使得乌漆麻黑的石墨变成灿烂夺目的钻石。

人造金刚石的未来发展动向

随著人们对金刚石性质的认识日益深刻,加上在冶金、地质钻探、机械、光学仪器加工、电子工业和航空技术等方面的广泛应用,使得金刚石不论是在经济建设、生产技术和国防工业上,都扮演著举足轻重的角色。

想要有效地提高人造金刚石的质与量,超高压技术的研究是一个重要因素。从物质结构转化的角度来看,不但要有超高压技术,更需要高温高压设备,所产生的温度压力能够稳定且可被准确测量才行。因为只有在十分高且稳定的压力之下,物质的性质才会产生惊人的变化,新的材料及超硬材料才会出现。正因如此,目前世界各国都十分重视「高压物理」的研究工作。压力已由原先的几万大气压,提升到几百万大气压,甚至可望达到千万大气压。随著超高压技术的发展,将使人造金刚石在晶形、颗粒、产量与质料等方面产生重大突破,且让我们拭目以待。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/481712.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-06-08
下一篇2023-06-08

发表评论

登录后才能评论

评论列表(0条)

    保存