电子显微镜的优缺点分别是什么

电子显微镜的优缺点分别是什么,第1张

优点:

1、分辨率高,光学显微镜的分辨率为0.2μm,透射电子显微镜的分辨率为0.2nm,也就是说透射电子显微镜在光学显微镜的基础上放大了1000倍。

2、透射式电子显微镜常用于观察那些用普通显微镜所不能分辨的细微物质结构;扫描式电子显微镜主要用于观察固体表面的形貌,也能与X射线衍射仪或电子能谱仪相结合,构成电子微探针,用于物质成分分析;发射式电子显微镜用于自发射电子表面的研究。

缺点:

1、在电子显微镜中样本必须在真空中观察,因此无法观察活样本。随着技术的进步,环境扫描电镜将逐渐实现直接对活样本的观察;

2、在处理样本时可能会产生样本本来没有的结构,这加剧了此后分析图像的难度;

3、由于电子散射能力极强,容易发生二次衍射等;

4、由于为三维物体的二维平面投影像,有时像不唯一;

5、由于透射电子显微镜只能观察非常薄的样本,而有可能物质表面的结构与物质内部的结构不同;

6、超薄样品(100纳米以下),制样过程复杂、困难,制样有损伤;

7、电子束可能通过碰撞和加热破坏样本;

8、此外电子显微镜购买和维护的价格都比较高。

扩展资料

生物电镜研究对象:

1、生物体体表及形态研究:主要是通过扫描电镜观察分析比如昆虫体表表面结构(如眼睛、翅膀及体表微结构)及细菌病毒等微生物形态结构、大小等研究。

2、细胞超微结构及超微病理研究:主要通过透射电镜观察分析各种组织中细胞的形态及诸如线粒体、内质网、核糖体、溶酶体、分泌颗粒等细胞器,细胞连接如桥粒连接、紧密连接等,特化结构如纤毛、微绒毛等。

间质成分如胶原纤维,基质结构及血管结构等,还可以通过辅助仪器分析细胞内各种元素的分布情况等。通过连续切片技术进行三维重构对细胞器、细胞连接结构等三维结构进行研究。

3、膜蛋白结构研究:主要通过冷冻电镜和三维重构技术观察分析蛋白形态结构及其成分构成包括各种膜结构蛋白及蛋白定位及定性研究;酶细胞化学研究;抗原抗体研究(胶体金技术)等等。

4、临床超微病理研究:主要通过透射电镜对活检组织进行观察分析,做出病理判断,比如肾脏病疾病分型、肝炎分型、肿瘤组织来源、病毒类型判断等。

参考资料来源:百度百科-电子显微镜

科研人员设计了一个有趣的实验:操作扫描式电子显微镜,观察蝴蝶的翅膀。通过这台可以看清纳米尺度物体三维结构的显微镜,人们惊奇地发现:原本色彩斑斓的蝴蝶翅膀竟然失去了色彩,显现出奇妙的凹凸不平的结构。原来,蝴蝶的翅膀本是无色的,只是因为具有特殊的微观结构,才会在光线的照射下呈现出缤纷的色彩。结构性色彩(structural color)不同于色素色彩(pigment color)。色素色彩的变化主要来源于对不同频率光的吸收,而结构性色彩,其原理是利用周期性结构,即光子晶体,对光的反射、透射等进行调控。先说光子晶体,它最大的特点是存在禁带,即在特定频率段内,光是不能传播的。所以可以利用这点来反射特定频率的光,起到调控色彩的目的。相对于色素色彩,结构性色彩具有更高的调控光的效率,这是生物进化的神奇结果。一般来说,光子晶体可以分为一维、二维、三维,所以自然界中也存在这三种纳米周期光学结构。见下图,其中A、B、C是一维光子晶体,D、E是二维光子晶体,F、G是三维光子晶体。实际上,单纯地调节颜色,一维的光子晶体就够了,但是生物进化还是发展到了二维和三维光子晶体。对于这个问题,科学家也没有给出比较明确的答案。但是二维的光子晶体还有另外一个优势,那就是疏水性。此外,有些生物还可以改变身体的颜色,实际上,也是通过调控周期结构的周期来改变的,鱼通过改变细胞的体积来改变颜色,图B的小虫子通过收缩或者扩展翅膀来改变颜色。实际上变色龙也是基于这个道理改变颜色的。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/482189.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-06-09
下一篇2023-06-09

发表评论

登录后才能评论

评论列表(0条)

    保存