而是将服务器的硬件拆分成多个不同的单元分别置于机架中
通过数据通信达到服务器的效果
但是可能1个机柜下面就只存在1台服务器
不同的机架分别作为存储单元 运算单元 数据交换单元等不同的功能单元
适用场景: AI推理(图像分类识别、语音识别、自然语言处理)、视频编解码、机 器 学习、轻量级训练 等。从GPU高性能计算到可视化再到人工智能基础设施,为客户提供计算能力强大,弹性可配置,性价比高的异构计算实例。其应用前景极其广泛,适用于深度学习、视频渲染、虚拟化桌面等对计算能力、时延要求极高的场景,同时还能满足分子建模、基因组学等领域对基础设施的高要求。
腾讯云推出最新异构计算全新产品矩阵,从GPU高性能计算到可视化再到人工智能基础设施,为客户提供计算能力强大,弹性可配置,性价比高的异构计算实例。
其应用前景极其广泛,适用于深度学习、视频渲染、虚拟化桌面等对计算能力、时延要求极高的场景,同时还能满足分子建模、基因组学等领域对基础设施的高要求。
以深度学习为例,深度学习在训练阶段涉及大量浮点数值计算,矩阵乘法,向量化等操作,需要处理的数据规模可以高达几个T。随着深度学习层次越来越深,计算量的增长也将随之加大。
一次训练过程使用CPU需要几天甚至几周才能完成,而使用腾讯云的GPU云服务器,可以小时级完成训练,优势很明显。只有快速完成深度学习的训练过程,才能加快深度学习的迭代速度,帮助企业改进产品,在竞争中胜出。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)