R语言里面的因子

R语言里面的因子,第1张

R语言中的因子确实不好理解,很多人都这么觉得。在R语言中,因子(factor)表示的是一个符号、一个编号或者一个等级,即,一个点。例如,人的个数可以是1,2,3,4......那么因子就包括,1,2,3,4.....还有统计量的水平的时候用到的高、中、低,也是因子,因为他是一个点。与之区别的向量,是一个连续性的值,例如,数值中有1,1.1,1.2......可以作为数值来计算,而因子则不可以。如果用我自己的理解,简单通俗来讲:因子是一个点,向量是一个有方向的范围。在R中,如果把数字作为因子,那么在导入数据之后,需要将向量转换为因子(factor),而因子在整个计算过程中不再作为数值,而是一个"符号"而已。因子的水平就是因子的所有不相同的符号的集合。

创建因子的函数介绍如下:

factor(x, levels = sort(unique(x), na.last = TRUE),

labels = levels, exclude = NA, ordered = is.ordered(x))

levels 用来指定因子可能的水平(缺省值是向量x中互异的值);labels

用来指定水平的名字;exclude表示从向量x中剔除的水平值;ordered是

一个逻辑型选项用来指定因子的水平是否有次序。回想数值型或字符型

的x。

>factor(1:3)

[1] 1 2 3

Levels: 1 2 3

>factor(1:3, levels=1:5)

[1] 1 2 3

Levels: 1 2 3 4 5

>factor(1:3, labels=c("A", "B", "C"))

[1] A B C

Levels: A B C

>factor(1:5, exclude=4)

[1] 1 2 3 NA 5

Levels: 1 2 3 5

函数levels用来提取一个因子中可能的水平值:

>f <- factor(c(2, 4), levels=2:5)

>f

[1] 2 4

Levels: 2 3 4 5

>levels(f)

[1] "2" "3" "4" "5"

因子用来存储类别变量(categorical variables)和有序变量,这类变量不能用来计算而只能用来分类或者计数。因子表示分类变量,有序因子表示有序变量。生成因子数据对象的函数是factor(),语法是factor(data, levels, labels, ...),其中data是数据,levels是因子水平向量,labels是因子的标签向量。

1、创建一个因子。

例1:

>colour <- c('G', 'G', 'R', 'Y', 'G', 'Y', 'Y', 'R', 'Y')

>col <- factor(colour)

>col1 <- factor(colour, levels = c('G', 'R', 'Y'), labels = c('Green', 'Red', 'Yellow')) #labels的内容替换colour相应位置对应levels的内容

>col2 <- factor(colour, levels = c('G', 'R', 'Y'), labels = c('1', '2', '3'))

>col_vec <- as.vector(col2) #转换成字符向量

>col_num <- as.numeric(col2) #转换成数字向量

>col3 <- factor(colour, levels = c('G', 'R'))

2、创建一个有序因子。

例1:

>score <- c('A', 'B', 'A', 'C', 'B')

>score1 <- ordered(score, levels = c('C', 'B', 'A'))

>score1

[1] A B A C B

Levels: C <B <A

3、用cut()函数将一般的数据转换成因子或有序因子。

例1:

>exam <- c(98, 97, 52, 88, 85, 75, 97, 92, 77, 74, 70, 63, 97, 71, 98, 

65, 79, 74, 58, 59, 60, 63, 87, 82, 95, 75, 79, 96, 50, 88)

>exam1 <- cut(exam, breaks = 3) #切分成3组

>exam1

[1] (82,98] (82,98] (50,66] (82,98] (82,98] (66,82] (82,98] (82,98] (66,82]

[10] (66,82] (66,82] (50,66] (82,98] (66,82] (82,98] (50,66] (66,82] (66,82]

[19] (50,66] (50,66] (50,66] (50,66] (82,98] (66,82] (82,98] (66,82] (66,82]

[28] (82,98] (50,66] (82,98]

Levels: (50,66] (66,82] (82,98]

>exam2 <- cut(exam, breaks = c(0, 59, 69, 79, 89, 100)) #切分成自己设置的组

>exam2

[1] (89,100] (89,100] (0,59]   (79,89]  (79,89]  (69,79]  (89,100] (89,100]

[9] (69,79]  (69,79]  (69,79]  (59,69]  (89,100] (69,79]  (89,100] (59,69]

[17] (69,79]  (69,79]  (0,59]   (0,59]   (59,69]  (59,69]  (79,89]  (79,89]

[25] (89,100] (69,79]  (69,79]  (89,100] (0,59]   (79,89]

Levels: (0,59] (59,69] (69,79] (79,89] (89,100]

>attr(exam1, 'levels')

[1] "(50,66]" "(66,82]" "(82,98]"

>attr(exam2, 'levels')

[1] "(0,59]"   "(59,69]"  "(69,79]"  "(79,89]"  "(89,100]"

>attr(exam2, 'class')

[1] "factor"

#一个有序因子

>x <- factor(rep(1:5,3))

>ordered(x,labels = c('a1','a2','a3','a4','a5'))

[1] a1 a2 a3 a4 a5 a1 a2 a3 a4 a5 a1 a2 a3 a4 a5

Levels: a1 <a2 <a3 <a4 <a5

R中的因子用于存储不同类别的数据,可以用来对数据进行分组,例如人的性别有男和女两个类别,根据年龄可以将人分为未成年人和成年人,考试成绩可以分为优,良,中,差。

R 语言创建因子使用** factor() **函数,向量作为输入参数。

factor() 函数语法格式:

参数说明:

以下实例把字符型向量转换成因子:

我们可以看到输出sex的时候,除了显示字符串的内容以外,这里还有一行levels,证明sex有两个level(类别),female和male。这个顺序也是有讲究的,一般是按字母顺序来排列。我们也可以按照自己的需要来排列因子的顺序。以下实例设置因子水平为levels=c("male","female"):

你会发现现在levels的顺序就按照你设置的来显示了。

我们还能够设置显示的标签

可以看到虽然最初我们构建的向量里面包含的是male和female,最后因子却变成了man和woman。关于这个参数后面我们还会给大家举个更实际的,跟临床数据相关的例子。

R中的因子使用还是更广泛的,例如做差异表达分析的时候我们可以根据因子将数据分成两组。绘制boxplot的时候,我们也可以根据因子来将数据分成两组。更多的实例可以参考下面的视频讲解

R语言基础培训

【R语言】R中的因子(factor)

变量课归结为名义型、有序型或连续型变量。

名义型变量是美哟顺序之分的类别变量。有序型变量表示一种顺序关系,而非数量关系。连续型变量可以呈现为某个范围内的任意值,并同事表示了顺序和数量。

类别(名义型)变量和有序类别(有序型)变量在R中称为因子(factor)。因子决定了数据的分析方式以及如何进行诗句呈现。

函数(factor)以一个整数向量的形式存储类别值,整数的取值范围是[1...k](其中k是名义型变量中唯一值的个数)同时一个由字符串(原始值)组成的内部向量将映射到这些整数上。

要表示有序型变量,需要为函数factor()指定参数order=TRUE。

对于字符型向量,因子的水平默认依字母顺序创建。但按字母顺粗排序的因子很少能让人满意,可通过指定levels选项来默认覆盖默认排序。

数值型变量可以用levels和lables参数来编码成因子。

首先,以向量形式输入数据,然后将diabetes和status分别制定为普通因子和有序型因子。最后,将数据合并为一个数据框。函数str(object)可提供R中某个对象的信息,它清楚的显示diabetes是一个因子,而status是一个有序型因子,以及此数据框在内部是如何进行编码的。

函数summary()会区别对待各个变量,它显示了连续性变量age的最小值、最大值、均值和各四分位数【四分位数(Quartile)也称四分位点,是指在统计学中把所有数值由小到大排列并分成四等份,处于三个分割点位置的数值。多应用于统计学中的箱线图绘制。它是一组数据排序后处于25%和75%位置上的值。四分位数是通过3个点将全部数据等分为4部分,其中每部分包含25%的数据。很显然,中间的四分位数就是中位数,因此通常所说的四分位数是指处在25%位置上的数值(称为下四分位数)和处在75%位置上的数值(称为上四分位数)。与中位数的计算方法类似,根据未分组数据计算四分位数时,首先对数据进行排序,然后确定四分位数所在的位置,该位置上的数值就是四分位数。与中位数不同的是,四分位数位置的确定方法有几种,每种方法得到的结果会有一定差异,但差异不会很大,该解释来源于百度百科】,并显示了类别型变量diabetes和status的频数值。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/484674.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-06-09
下一篇2023-06-09

发表评论

登录后才能评论

评论列表(0条)

    保存