路径系数的显著性检验涉及两个统计量,一个是路径系数的值,一个是标准误
因此我们不可能单凭路径系数的大小来判定其是否显著,就算就路径系数接近1,如果标准误更大,那路径系数的t检验值也会相当小,甚至无限接近0。
合理的说法应该是路径系数t检验的t值多大时,路径系数显著不等于0,那我们知道,大样本时,t的绝对值大于1.96则显著。
Amos标准化路径系数类似于回归中的标准化回归系数,取值范围在0-1之间。路径系数的平方表示潜变量对测量题目方差的解释比率,如果Amos标准化路径系数大于1,一种可能的情况是外源变量之间的相关性太强,考虑把两个相关性很强的因子合并在一起。另外,数据质量差也有可能导致标准化路径系数大于1。这种情况比较麻烦,可能需要你去做一次数据清洗工作,提升数据的质量。在路径系数都显著的前提下,直接比较标准化路径系数,或者用amos自带的pairwise parameters功能,若CR值大于1.96,差异显著,设置完全自由模型与部分限制条件模型,两个进行对比,看是否存在显著差异。
amos标准化路径系数的范围:0-1之间。
路径系数的平方表示潜变量对测量题目方差的解释比率,如果Amos标准化路径系数大于1,一种可能的情况是外源变量之间的相关性太强,考虑把两个相关性很强的因子合并在一起。另外,数据质量差也有可能导致标准化路径系数大于1。
内容
路径分析包含了两个基本内容:一个是路径的搜索;另一个是距离的计算。路径搜索的算法与连通分析是一致的,通过邻接关系的传递来实现路径搜索。路径的长度(距离)以积聚距离(accumulated distance)来计算。
距离的计算方法为:将栅格路径视做由一系列路径段(path segments)组成,在进行路径搜索的同时计算每个路径段的长度并累计起来,表示从起点到当前栅格单元的距离。这里路径段指的是在一定的精度范围内可以以直线段模拟和计算的栅格单元集合。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)