目前网络时间服务有哪几种协议?

目前网络时间服务有哪几种协议?,第1张

杭州元帅http://www.vbgood.com/viewthread.php?tid=18070&highlight=

在一个局域网中,许多系统都要求每台计算机能够保持时间的一致性,WIN2000系统提供了与主域服务器时间同步功能,即工作站只要登录到主域服务器,工作站系统的时间自动与主域服务器时间一致,但接下来的问题是我们如何使主域服务器的时间同步世界标准时间。如要获得世界标准时间,比较精确的做法是使用GPS卫星时钟获得毫秒级精度的标准时间,但这是要money的哦。如果我们在时间精度上只需要秒级的,又能够连接到Internet,则我们可以利用Internet上的标准时间服务器获得标准时间。

事实上在Internet上有三个不同的时间服务,每一个都由Request for Comment(RFC)定义为Internet日期时间标准。这三个标准分别为:RFC-867、RFC-868和RFC-1305。下面就先介绍RFC-867:

RFC867 Daytime协议(RFC867 Daytime Protocol)

本RFC规范了一个ARPA Internet community上的标准。在ARPA Internet上的所有主机应当采用和实现这个标准。

一个有用的测量和调试工具就是daytime服务。它的作用就是返回当前时间和日期,格式是字符串格式。

* 基于TCP的daytime服务

daytime服务是基于TCP的应用,服务器在TCP端口13侦听,一旦有连接建立就返回ASCII形式的日期和时间(接收到的任何数据被忽略),在传送完后关闭连接。

* 基于UDP的daytime服务

daytime服务也可以使用UDP协议,它的端口也是13,不过UDP是用数据报传送当前时间的。接收到的数据被忽略。

* Daytime格式

对于daytime没有特定的格式,建议使用ASCII可打印字符,空格和回车换行符。daytime应该在一行上。

下面是两种流行的格式:

一种流行的格式是:Weekday, Month Day, Year Time-Zone

例子:Tuesday, February 22, 1982 17:37:43-PST

另一种流行的格式用于SMTP中:dd mmm yy hh:mm:ss zzz

例子:02 FEB 82 07:59:01 PST

注意:对于机器来说,有用的时间采用了时间协议(Time Protocol RFC-868)

接下来我们用VB程序实现通过RFC867协议设置我们自己的计算机系统时间,为使程序简化,程序未进行日期校正,只进行时间校正。在FORM1中添加1个Winsock控件,将下面代码剪贴到FORM1的代码窗体中即可:

Option Explicit

'采用RFC867 Daytime协议获取标准时间例程

'www.time.ac.cn为中科院国家授时中心,采用北京时间

'时间格式:Mon Jul 26 09:58:57 2004

'time.nist.gov为美国标准技术院,采用格灵威时间

'时间格式:53212 04-07-26 02:00:12 50 0 0 488.3 UTC(NIST) *

Private Declare Sub Sleep Lib "kernel32" (ByVal dwMilliseconds As Long)

Dim NoSrv As Boolean

Dim TimeFromNet

Private Sub Form_Load()

Winsock1.Protocol = sckTCPProtocol '采用TCP协议

NetTime "www.time.ac.cn" '首先取中科院国家授时中心时间

If NoSrv Or TimeFromNet = "" Then

'若未取到中科院国家授时中心时间,则取美国标准技术院时间

NetTime "time.nist.gov"

If NoSrv Or TimeFromNet = "" Then

'若不能取美国标准技术院时间,则报错

MsgBox "检测不到网络标准时间服务器time.nist.gov!"

Else

'为使网络传输误差减小,第2次再取美国标准技术院时间

NetTime "time.nist.gov"

If TimeFromNet = "" Then

MsgBox "网络标准时间服务器time.nist.gov超时!"

Else

TimeFromNet = Mid(TimeFromNet, 17, 8)

TimeFromNet = TimeSerial((Hour(TimeFromNet) + 8) Mod 24, Minute(TimeFromNet), Second(TimeFromNet))

Time = TimeFromNet '设置系统时间

End If

End If

Else

'为使网络传输误差减小,第2次再取中科院国家授时中心时间

NetTime "www.time.ac.cn"

If TimeFromNet = "" Then

MsgBox "网络标准时间服务器www.time.ac.cn超时!"

Else

Time = Mid(TimeFromNet, 12, 8) '设置系统时间

End If

End If

End

End Sub

'关闭Winsock子程序

Private Sub Winsock1_Close()

If Winsock1.State <>sckClosed Then

Winsock1.Close

End If

End Sub

'Winsock接收数据事件

Private Sub Winsock1_DataArrival(ByVal bytesTotal As Long)

TimeFromNet = String(bytesTotal, " ")

Winsock1.GetData TimeFromNet, vbString, bytesTotal

End Sub

'Winsock出错事件

Private Sub Winsock1_Error(ByVal Number As Integer, Description As String, ByVal Scode As Long, ByVal Source As String, ByVal HelpFile As String, ByVal HelpContext As Long, CancelDisplay As Boolean)

NoSrv = True

End Sub

'从互联网上标准时间提供网站获取标准时间

Private Sub NetTime(TimeSrv As String)

NoSrv = False

TimeFromNet = ""

If Winsock1.State <>sckClosed Then Winsock1.Close

Winsock1.RemoteHost = TimeSrv ' "www.time.ac.cn" 或 "time.nist.gov"

Winsock1.RemotePort = 13

Winsock1.LocalPort = 0

Winsock1.Connect

Do While TimeFromNet = "" '循环等待标准时间网站返回时间数据

If NoSrv Then Exit Do '若Winsock出错,则跳出循环等待

Sleep 55

DoEvents

Loop

If Winsock1.State <>sckClosed Then Winsock1.Close

End Sub

搜索更多相关主题的帖子: internet 标准

上面介绍了RFC-867标准和VB例程,显然RFC-867标准采用返回当前时间和日期的格式是字符串格式以及对于daytime没有特定的格式(例如:中科院国家授时中心为"Mon Jul 26 09:58:57 2004",而美国标准技术院为"53212 04-07-26 02:00:12 50 0 0 488.3 UTC(NIST)"),这2点似乎都不是太舒服,因此我们希望Internet上的标准时间服务器最好能够返回具有标准格式的数字类型数据,其实RFC在制定RFC-867标准时已经考虑了我们的意见,因为他同时还推出了RFC-868标准,下面就介绍RFC-868:

RFC868 时间协议

(RFC868 Time Protocol)

本RFC规范了一个ARPA Internet community上的标准。在ARPA Internet上的所有主机应当采用和实现这个标准。

此协议提供了一个独立于站点的,机器可读的日期和时间信息。时间服务返回的是以秒数,是从1900年1月1日午夜到现在的秒数,天哪,也不小呢。

设计这个协议的一个重要目的在于,网络上的许多主机并没有时间的观念,在分布式的系统上,我们可以想一想,北京的时间和东京的时间如何分呢?主机的时间往往可以人为改变,而且因为机器时钟内的误差而变得不一致,因此需要使用时间服务器通过选举方式得到网络时间,让服务器有一个准确的时间观念。不要小看时间,这对于一些以时间为标准的分布运行的程序简单是太重要了。

这个协议可以工作在TCP和UDP协议下。下面是通过TCP协议工作的时间协议的工作过程:这里S代表服务器,U代表客户。

S: 检测端口37

U: 连接到端口37

S: 以32位二进制数发送时间

U: 接收时间

U: 关闭连接

S: 关闭连接

服务器在端口37上监听连接。当连接建立后,服务器返回一个32位的时间值,然后关闭连接。这个过程也不难,如果服务器不能决定现在是什么时间,服务器会拒绝连接或不发送任何数据而直接关闭连接。

下面我们看看使用UDP协议的情况:这里S代表服务器,U代表客户。

S: 检测端口37

U: 发送一个空数据报到端口37

S: 接收这个空数据报

S: 发送包含32位二进制数(用于表示时间)的数据报

U: 接收时间数据报

服务器在端口37上监听数据包。当一个数据包来后,服务器返回一个包含32位的时间的数据包。这个过程也不难,如果服务器不能决定现在是什么时间,服务器会抛弃接收到的数据报而不作出任何应答。

* 时间

时间是由32位表示的,是自1900年1月1日0时到当前的秒数,我们可以计算一下,这个协议只能表示到2036年就不能用了。(但是我们也知道计算机发展速度这么快,可能到时候就会有更好的协议代替这个协议,或者有已经想出有效的解决办法了。)

下面是些例子:

the time 2,208,988,800 corresponds to 00:00 1 Jan 1970 GMT,

2,398,291,200 corresponds to 00:00 1 Jan 1976 GMT,

2,524,521,600 corresponds to 00:00 1 Jan 1980 GMT,

2,629,584,000 corresponds to 00:00 1 May 1983 GMT,

以及 -1,297,728,000 corresponds to 00:00 17 Nov 1858 GMT.

接下来我们用VB程序实现通过RFC868协议设置我们自己的计算机系统时间,为使程序简化,程序未进行日期校正,只进行时间校正。不过这个例程比上面的程序要完善得多,首先他可以读取全球20个标准时间服务器的时间数据,第二他采用了网络延时的补偿,第三对网络延时超过3秒的标准时间服务器进行了过滤。在FORM1中添加1个Winsock控件,将下面代码剪贴到FORM1的代码窗体中即可:

Option Explicit

'时间协定(RFC-868)提供了一个32位元的数字,用来表示从1900年1月1日至今的秒数。

'该时间是UTC(不考虑字母顺序,它表示世界时间座标(CoordinatedUniversalTime)),

'它类似於所谓的格林威治标准时间(GreenwichMeanTime)或者GMT-英国格林威治时间。

'用TCP获得准确时间的程式应该有如下步骤:

'1 连结到提供此服务的端口37;

'2 接收32位元的时间;

'3 关闭连结。

Private Declare Sub Sleep Lib "kernel32" (ByVal dwMilliseconds As Long)

Dim NoSrv As Boolean

Dim TimeFromNet '存放从时间网站读取的秒数

Dim TimeURL(19) As String '20个时间提供网站的URL

'程序入口

Private Sub Form_Load()

Dim i As Long, T0 As Single

Dim HH As Integer, MM As Integer, SS As Integer '时、分、秒

Me.Show

CDec (TimeFromNet) '转换为 Decimal 子类型,28位整数

TimeURL(0) = "www.time.ac.cn" '首先取中科院国家授时中心时间

TimeURL(1) = "time.nist.gov" '美国标准技术院

TimeURL(2) = "time-a.timefreq.bldrdoc.gov"

TimeURL(3) = "nist1.datum.com"

TimeURL(4) = "nist1-dc.glassey.com"

TimeURL(5) = "nist1-ny.glassey.com"

TimeURL(6) = "nist1-sj.glassey.com"

TimeURL(7) = "utcnist.colorado.edu"

TimeURL(8) = "time-b.timefreq.bldrdoc.gov"

TimeURL(9) = "time-c.timefreq.bldrdoc.gov"

TimeURL(10) = "time-a.nist.gov"

TimeURL(11) = "time-b.nist.gov"

TimeURL(12) = "nist1.aol-va.truetime.com"

TimeURL(13) = "nist1.aol-ca.truetime.com"

TimeURL(14) = "time-nw.nist.gov"

TimeURL(15) = "Time-b.timefreq.bldrdoc.gov"

TimeURL(16) = "Time-c.timefreq.bldrdoc.gov"

TimeURL(17) = "ptbtime1.ptb.de"

TimeURL(18) = "clock.cmc.ec.gc.ca"

TimeURL(19) = "chronos.csr.net"

For i = 0 To 19

Me.Caption = "正在联接—" &TimeURL(i)

NetTime TimeURL(i) '首次读取授时中心时间

If (Not NoSrv) And TimeFromNet >0 Then '如果时间读取成功

'为使网络传输误差减小,二次再取授时中心时间

T0 = Timer '为减小网络延时引起的误差,先读取当前时间

NetTime TimeURL(i) '二次读取授时中心时间

If (Not NoSrv) And TimeFromNet >0 Then '如果第二次时间读取成功

TimeFromNet = TimeFromNet + Int((Timer - T0) / 2 + 0.5) '加上网络延时补偿(延时/2为延时补偿)

TimeFromNet = TimeFromNet - 86400 * Int(TimeFromNet / 86400) '以天取模(86400秒)

SS = TimeFromNet Mod 60 '取秒

TimeFromNet = TimeFromNet 60

MM = TimeFromNet Mod 60 '取分

HH = ((TimeFromNet 60) + 8) Mod 24 '取小时(北京时间+8)

' MsgBox "网络延时:" &(Timer - T0)

Time = TimeSerial(HH, MM, SS) '设置系统时间

Exit For '取时完毕,退出循环

End If

End If

Next i

If i >19 Then

MsgBox "无法取得网络时间!"

End If

End

End Sub

'关闭Winsock事件

Private Sub Winsock1_Close()

If Winsock1.State <>sckClosed Then

Winsock1.Close

End If

End Sub

'Winsock接收数据事件

Private Sub Winsock1_DataArrival(ByVal bytesTotal As Long)

Dim TmpData

Winsock1.GetData TmpData

TimeFromNet = TmpData(3) + TmpData(2) * 256 + TmpData(1) * 256 * 256 + TmpData(0) * 256 * 256 * 256

End Sub

'Winsock出错事件

Private Sub Winsock1_Error(ByVal Number As Integer, Description As String, ByVal Scode As Long, ByVal Source As String, ByVal HelpFile As String, ByVal HelpContext As Long, CancelDisplay As Boolean)

NoSrv = True

End Sub

'从互联网上标准时间提供网站获取标准时间

Private Sub NetTime(TimeSrv As String)

Dim i As Integer '超时计数器

i = 0

NoSrv = False

TimeFromNet = 0

If Winsock1.State <>sckClosed Then Winsock1.Close

Winsock1.RemoteHost = TimeSrv '时间提供网站的URL

Winsock1.RemotePort = 37 '时间协定(RFC-868)指定端口

Winsock1.LocalPort = 0

Winsock1.Connect

Do While TimeFromNet <= 0

i = i + 1

If NoSrv Or i >50 Then Exit Do '若Winsock出错或超时约3秒,则时间获取失败

Sleep 55

DoEvents

Loop

If Winsock1.State <>sckClosed Then Winsock1.Close

End Sub

Edited by: 杭州元帅

最精确的网络时间协议应该是RFC 1305—NTP(Network Time Protocol)了,它能够1-50 ms 的时间精确度,但该协议非常复杂,另外很抱歉我手头没有RFC 1305中文翻译资料,不过后来RFC又出了一个RFC1769 —SNTP(Simple Network Time Protocol),简化了一些RFC 1305要求的操作和使用范围,下面就介绍RFC1769 —SNTP:

Network Working Group D. Mills

Request for Comments: 1769University of Delaware

Obsoletes: 1361 March 1995

Category: Informational

(RFC1769 ——Simple Network Time Protocol)

本备忘录的状况:

本备忘录为Internet community提供了信息,但不规定任何一种类型的 Internet 标准。 本备忘录的分发没有限制。

概要

本备忘录描述简单网络时间协议(SNTP),这是网络时间协议(NTP) 的一个改写本,NTP协议适用于同步因特网上的计算机时钟。当不须要实现RFC 1305 所描述的NTP完全功能的情况下,可以使用SNTP。它能用单播方式(点对点)和广播方式(点对多点)操作。它也能在IP 多播方式下操作(可提供这种服务的地方)。SNTP与当前及以前的NTP版本并没有大的不同。但它是更简单,是一个无状态的远程过程调用(RPC),其准确和可靠性相似于UDP/TIME 协议在RFC868描述中所预期的。

本备忘录淘汰相同的标题的RFC 1361。它的目的是解释用广播方式操作的协议模式,提供某些地方的进一步说明并且改正一些印刷上的错误。在NTP版本3 RFC 1305中说明的工作机理对SNTP的实现不是完全需要的。本备忘录的分发没有限制。

目录

1. 介绍

2. 工作模式与地址分配

3. NTP时间戳格式

4. NTP 报文格式

5. SNTP 客户端操作

6. SNTP 服务器操作

7. 参考资料

8. 安全考虑

9. 作者的地址

1. 介绍

RFC 1305 [MIL92] 指定网络时间协议(NTP)来同步因特网上的计算机时钟。它提供了全面访问国家时间和频率传播服务的机制,组织时间同步子网并且为参加子网每一个地方时钟调整时间。 在今天的因特网的大多数地方, NTP 提供了1-50 ms 的精确度,精确度的大小取决于同步源和网络路径等特性。

RFC 1305 指定了NTP协议机制中的事件,状态,传输功能和操作,另外,还有可选择的算法,它改进测时质量并且减少了一些同步源中可能存在的错误。为了获得因特网上主要路径的延时精确到毫秒级,使用一些复杂的算法或者他们的等价算法是必要的。但是,在许多场合这样的精确度是不要求,或许精确到秒已足够了。在这样的情况下,更简单的协议例如“时间协议”[POS83 ]已被使用。这些协议通过基于RPC交换:客户端请求此刻时间,然后服务器回传从某个已知时间点到现在的秒钟数。

NTP被设计成了性能差异很大的客户端及服务器均能适用,且适用于客户端及服务器所在网路有大范围的网络延迟和抖动的情况。今天的因特网上的NTP同步子网的大多数用户使用一个软件包包括了一整套的NTP 的选择和算法,是一个比较复杂,实时的应用系统。软件要适用于多种硬件平台:从巨型计算机到个人计算机。要在这样的范围都适用,它的庞大尺寸和复杂性就不适合于很多应用了。按照要求,探求一些可供选择的访问策略( 使用适合于精确度要求不是

很严格的简单软件)是有用的。

本备忘录描述简单网络时间协议(SNTP),它是一个简化了的NTP服务器和NTP客户端策略。SNTP在协议实现上没有什么更改,在最近也不会有什么变动。 访问范例与UDP/TIME 协议是一致的,实际上,SNTP应该更容易适用于使用个人计算机的 UDP/TIME 客户。而且,SNTP 也被设计在一个专门的服务器( 包括一台集成的无线电时钟)里操作。由于在系统里的那些各种各样反应机制的设计和控制,交付调节时间精确到微秒是可能的。这样的专门设计是切实可行的。

强烈建议SNTP 仅仅在同步子网的末端被使用。 SNTP 客户端应该仅在子网的叶子( 最高的阶层) 操作并在配置过程中没有依靠其它NTP或者SNTP客户端来同步。SNTP 服务器应该仅在子网的根( 阶层1) 操作并在配置过程中,除一台可靠的无线电时钟外中没有其它同步源。只有使用了有冗余的同步源及不同的子网路径及整套NTP实现中的crafted 算法,主服务器通常期望的可靠性才有可能达到。这种做法使主同步源在无线电时钟通信失败或者交付了错误时间时,还能用到其它几个无线电时钟和通向其它主要服务器的备份路径。因此,应该仔细考虑客户端中SNTP的使用,而不是在主服务器里的NTP的使用。

2. 工作模式与地址分配

象NTP一样,SNTP 能在单播(点向点) 或者广播(点对多点) 模式中操作。单播客户端发送请求到服务器并且期望从那里得到答复,并且(可选的),得到有关服务器的往返传播延迟和本地时钟补偿。广播服务器周期性地送消息给一指定的IP 广播地址或者IP多播地址,并且通常不期望从客户端得到请求,广播客户端监听地址但通常并不给服务器发请求。一些广播服务器可能选择对客户端作出反应请求以及发出未经请求广播消息;同时一些广播客户端可能会送请求仅为了确定在服务器和客户端之间的网络传播延迟。

在单播方式下,客户端和服务器的IP 地址按常规被分配。在广播方式下,服务器使用一指定的IP播送地址或者IP多播地址,以及指明的媒介访问播送地址,客户端要在这些地址上帧听。为此,IP 广播地址将限制在一个单独的IP子网范围,因为路由器不传播IP广播数据报。就以太网而论,例如,以太网媒介访问广播地址(主机部分全部为1) 被用于表示IP广播地址。

另一方面,IP 多播地址将广播的潜在有效范围扩展到整个因特网。其真实范围,组会员和路由由因特网组管理协议(IGMP) 确定 [DEE89 ],对于各种路由协议,超出了这份资料的讨论范围。 就以太网而论,例如,以太网媒介访问播送地址(全部为1)要和分配的224.0.1.1 的IP 多播地址合用。 除了IP 地址规范和IGMP,在服务器操作IP广播地址或者IP多播地址没有什么不同。

广播客户端帧听广播地址,例如在以太网情况下主机地址全部为1的。就广播地址的IP而论,没有更进一步规定的必要了。在IP多组广播情况下,主机可能需要实现IGMP,为的是让本地路由器把消息拦截后送到224.0.1.1 多播组。这些考虑不属于这份资料的讨论范围。

就当前指定的SNTP而论,其真正的弱点是多目广播客户端可能被一些行为不当或者敌对的在因特网别处的SNTP/NTP 多播服务器攻击而瘫痪,因为目前全部这样服务器使用相同的IP 多播地址:224.0.1.1 组地址。 所以有必要,存取控制要基于那些以客户端信任的服务器源地址,即客户端选择仅仅为自己所知的服务器。或者,按照惯列和非正式协议,全部NTP多播服务器现在在每条消息内应包括已用MD5加密的加密位,以便客户端确定消息没有在传输中被修改。SNTP 客户端能实现那些必要加密和密钥分发计划在原则上是可能的,但是这在SNTP被设计成的那些简单的系统里不可能被考虑。

考虑到没有一个完整的SNTP规范,故IP 广播地址将使用在IP子网和局域网部分(指有完整功能的NTP服务器和SNTP客户端在同一子网上的局域网),而对于IP 多播地址来说,将只能用在为达到以上相同目而设计的特例中。尤其,只有服务器实现了RFC 1305 描述的NTP认证时(包括支持MD5消息位的算法),在SNTP 服务器里的IP 多播地址才被使用。

3. NTP时间戳格式

sntp使用在RFC 1305 及其以前的版本所描述标准NTP时间戳的格式。与因特网标准标准一致, NTP 数据被指定为整数或定点小数,位以big-endian风格从左边0位或者高位计数。除非不这样指定,全部数量都将设成unsigned的类型,并且可能用一个在bit0前的隐含0填充全部字段宽度。

因为SNTP时间戳是重要的数据和用来描述协议主要产品的,一个专门的时间戳格式已经建立。 NTP用时间戳表示为一64 bits unsigned 定点数,以秒的形式从1900 年1月1 日的0:0:0算起。整数部分在前32位里,后32bits(seconds Fraction)用以表示秒以下的部分。在Seconds Fraction 部分,无意义的低位应该设置为0。这种格式把方便的多精度算法和变换用于UDP/TIME 的表示(单位:秒),但使得转化为ICMP的时间戳消息表示法(单位:毫秒)的过程变得复杂了。它代表的精度是大约是200 picoseconds,这应该足以满足最高的要求了。

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Seconds |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Seconds Fraction (0-padded) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

注意,从1968 年起,最高有效位(整数部分的0 bit位) 已经被确定,64 位比特字段在2036 年将溢出。 如果NTP或者SNTP在2036 年还在使用的话,一些外部方法将有必要用来调整与1900年及2036 年有关的时间 (136 年的其它倍数也一样)。 用这样的限制使时间戳数据变得很讲究(要求合适的方法可容易地被找到)。从今以后每136 年,就会有200picosecond 的间隔,会被忽略掉,64 个比特字段将全部置为0 ,按照惯列它将被解释为一个无效的或者不可获得的时间戳。

4. NTP 报文格式

NTP 和SNTP 是用户数据报协议( UDP) 的客户端 [POS80 ],而UDP自己是网际协议( IP) [DAR81 ] 的客户端. IP 和UDP 报头的结构在被引用的指定资料里描述,这里就不更进一步描述了。UDP的端口是123,UDP头中的源断口和目的断口都是一样的,保留的UDP头如规范中所述。

以下是SNTP 报文格式的描述,它紧跟在IP 和UDP 报头之后。SNTP的消息格式与RFC-1305中所描述的NTP格式是一致的,不同的地方是:一些SNTP的数据域已被风装,也就是说已初始化为一些预定的值。NTP 消息的格式被显示如下。

1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|LI | VN |Mode | Stratum | Poll | Precision |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| 根延迟 |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| 根差量 |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| 参考标识符 |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

||

| 参考时间戳(64)|

||

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

||

| 原始时间戳(64) |

||

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

||

| 接受时间戳 (64) |

||

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

||

| 传送时间戳(64)|

||

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

||

||

| 认证符(可

GPS授时服务器是一款支持NTP和SNTP网络时间同步协议

授时系统框架图

,高精度、大容量、高品质的高科技时钟产品。设备采用冗余架构设计,高精度时钟直接来源于北斗、GPS系统中各个卫星的原子钟,通过信号解析驯服本地时钟源,实现卫星信号丢失后本地时钟精准保持功能。独特的嵌入式硬件设计、高效Linux操作系统,可灵活扩展多种时钟信号输出。全面支持最新NTP对时协议、MD5安全加密协议及证书加密协议,时间精度优于2毫秒。同时支持TOD、10MHz、 1PPS、日志记录、USB端口升级下载和干接点告警功能,配合全网时间统一监控软件,轻松实现网络时间同步及有效监控。

京准电子科技HR-901GB型GPS授时服务器可以广泛应用于医疗、安防、金融保险、移动通信、 云计算、电子商务、能源电力、石油石化、工业自动化、智能交通、智慧城市、物联网等领域。

系统结构

京准电子科技HR-901GB型GPS授时服务器创新性的融合了参考源无缝切换技术、高精度时间间隔测量TIC技术和自适应精密频率测控技术。采用模块化设计,由北斗接收机、GPS接收机、高性能工业级主板、人机界面及监控管理单元、本地时钟驯服单元、输出接口模块和电源模块组成。

京准电子科技HR-901GB型GPS授时服务器核心由64位高性能CPU、高速FPGA及高稳振荡器(铷原子钟或OCXO)构成,采用Linux进行多任务实时并行处理及调度。

系统可同时接收北斗、GPS发送的秒同步和时间信息及满足NTP/SNTP协议的网络时间报文,按优先级自动选择外部时间基准信号作为同步源并将其引控 到锁定状态(LOCKED).具有输入传输延时补偿算法,采用卡尔曼数字滤波技术滤除外部时间基准信号的抖动后,对铷原子钟或OCXO进行控制和驯服, 由内部振荡器分频得到1PPS信号,这样输出的1PPS信号同步于外部时间基准 输出的1PPS信号的长期稳定值,克服了由外部时间基准的秒脉冲信号跳变所 带来的影响,使输出的时间信号不但与外部时间基准信号保持同步而且更加稳定。当失去外部时间基准信号后,进入守时保持状态(HOLD-OVER),当外部 时间基准信号恢复时,自动结束守时保持状态并牵引跟踪到锁定状态。从而不间断的输出与UTC保持同步的时间信息。

重要特点

+ 超高带宽NTP服务器

+ GPS/北斗双参考源一级时钟服务器

+ 高性能工业级主板、嵌入式Linux操作系统

+ 提供六路独立10/100/1000Mbs网络接口

+ 可连接另一台NTP服务器,构成2级时钟

+ 可选内部精密时钟OCXO或铷原子钟

+ 安全高效的Web的用户界面

+ 支持SSH,SSL,SCP,SNMP,CustomMIB,HTTPS,Telnet等更多协议

+ 兼容IPv6和IPv4协议

+ 相对UTC时间准确度达到毫微秒级

+ 支持IBM主机需要的SysPlex时间信息输出

+ 支持固定位置模式下单星授时功能

+ VFD高清真空荧光显示屏

+ 可靠性MTBF达80000小时

+ 支持4000条日志记录功能

+ 支持远程唤醒和定时开关

+ 支持MD5加密协议

+ 支持证书加密协议

+ 支持干接点告警功能

地球分为东西十二个区域,共计 24 个时区,以格林威治作为全球标准时间(即GMT 时间,0时区),东部时区以格林威治时区进行加法,而西时区则以格林威治时间作减法。但地球的轨道并非正圆,在加上自转速度逐年递减,时间会有误差。在计算时间的时,最准确是使用“原子震荡周期”所计算的物理时钟。这种时钟被称为标准时间,即UTC时间(Coordinated Universal Time)。UTC 的准确性毋庸置疑,美国的 NIST F-1 原子钟 2000 年才将产生 1 秒误差。

实际生产生活中,使用原子时钟这种准确的计时似乎缺少必要性,我们更多关注的是参与活动的各个个体在相同的时间环境下对话。例如,当我们说明天早上8:00开会的时候,我们并不在乎原子时钟真实的计时情况,只要参会的所有个体对“明天早上8:00”这个时间具有相同的认知即可。这里时间同步是个非常重要的概念,如果某位同仁手表慢了半小时,那它对“早上8:00”的理解就比其他人要慢半小时,最终会导致ta开会迟到。同样的道理,我们在影视剧中经常能看到特种作战小组在执行特别任务前一般都要先完成组员之间的时间同步,避免组员之间在时间上的认知差异给任务带来不必要的麻烦,甚至危及生命。

NTP(Network Time Protocol,网络时间协议)是由RFC 1305定义的时间同步协议,用于分布式设备(比如电脑、手机、智能手表等)进行时间同步,避免人工校时的繁琐和由此引入的误差,方便快捷地实现多设备时间同步。 NTP校时服务基于UDP传输协议进行报文传输,工作端口默认为123/udp

NTP的实现过程如图所示,假如设备A和设备B本地时间存在差异(设备A早上10点,设备B早上11点),现在设备A欲通过NTP和设备B在时间上保持同步:

这样可以轻松计算出来:

现假设设备A和设备B之间的时间差位 ,易得:

通过上式计算出 .

设备A就能根据 调整本地时间,实现和设备B的时间同步。

NTP的目的是在一个同步子网中,通过NTP协议将主时间服务器的时钟信息传送到其他二级时间服务器,实现二级时间服务器和主时间服务器的时钟同步。这些服务器按层级关系连接,每一级称为一个层数(stratum),如主时间服务器层数为 stratum 1,二级时间服务器层数为 stratum 2,以此类推。时钟层数越大,准确性越低。

注意:准确性指相对于主时间服务器而言。

在NTP网络结构中,有以下几个概念:

在正常情况下,同步子网中的主时间服务器和二级时间服务器呈现出一种分层主从结构。在这种分层结构中,主时间服务器位于根部,二级时间服务器向叶子节点靠近,层数递增,准确性递减,降低的程度取决于网络路径和本地时钟的稳定性。

NTP有两种不同类型的报文,一种是时钟同步报文,另一种是控制报文。控制报文仅用于需要网络管理的场合,它对于时钟同步功能来说并不是必需的,这里不做介绍。

时钟同步报文封装在UDP报文中,其格式如图所示:

各主要字段解释如下:

其中,NTP发送和接收的报文数据包类似,通常只需要前48个字节就能进行授时和校时服务。下面分别是抓包获取的NTP请求数据包和回复数据包示例(仅前48个字节):

收到数据包后,接收端本地再产生一个时间戳( )。

这里,每个返回数据前4字节为秒的整数部分,后4字节为秒的小数部分。

设备可以采用多种NTP工作模式进行时间同步:

单播C/S模式运行在同步子网层数较高的层级上,客户端需要预先知道时间服务器IP或域名并定期向服务器发送时间同步请求报文,报文中的 Mode字段设置为 3(客户模式)。服务器端收到报文后会自动工作在服务器模式,并发送应答报文,报文中的Mode字段设置为4(服务器模式)。客户端收到应答报文后,进行时钟过滤和选择,并同步到优选的服务器。客户端不管服务器端是否可达,也不管服务器端所在的层数。在这种模式下,客户端会同步到服务器,但不会修改服务器的时钟。服务器则在客户端发送请求之间无需保留任何状态信息。客户端根据本地情况自由管理发送报文的时间间隔。

对等体模式运行在同步子网较低层级上,主动对等体和被动对等体实现时钟相互同步。这里有两个概念:主动对等体和被动对等体。

如上图所示,对等体模式工作步骤如下:

1.主动对等体和被动对等体首先交互Mode字段为3(客户端模式)和4(服务器模式)的NTP报文,这一步主要是获得通信时延。

主动对等体和被动对等体可以互相同步。如果双方的时钟都已经同步,则以层数小的时钟为准。

注意:对等体模式不需要用户手动设置,设备依据收到的NTP报文自动建立连接并设置状态变量。

广播模式应用在多台工作站和不需要很高精度的高速网络中。主要工作流程如图所示:

注意:在广播模式下,服务端只负责向外广播时钟信息,自身时钟不受客户端影响。

组播模式适用于有大量客户端分布在网络中的情况。通过在网络中使用 NTP 组播模式, NTP 服务器发送的组播消息包可以到达网络中所有的客户端,从而降低由于 NTP 报文过多而给网络造成的压力。主要工作流程如下:

注意:组播模式和广播模式类似,只是它是向特定的组播地址发送时钟同步广播报文。在组播模式下,服务端只负责向外广播时钟信息,自身时钟不受客户端影响。

多播模式适用于服务器分布分散的网络中。客户端可以发现与之最近的多播服务器,并进行同步。多播模式适用于服务器不稳定的组网环境中,服务器的变动不会导致整网中的客户端重新进行配置。其工作流程如下:

注意:为了防止多播模式下,客户端不断的向多播服务器发送 NTP 请求报文增加设备的负担,协议规定了最小连接数的概念。多播模式下,客户端每次和服务器时钟同步后,都会记录下此次同步过中建立的连接数,将调用最少连接的数量被称为最小连接数。以后当客户端调动的连接数达到了最小连接数且完成了同步,客户端就认为同步完成;同步完成后每过一个超时周期,客户端都会传送一个报文,用于保持连接。同时,为了防止客户端无法同步到服务器,协议规定客户端每发送一个 NTP 报文,都会将报文的生存时间 TTL(Time To Live)进行累加(初始为 1),直到达到最小连接数,或者 TTL 值达到上限(上限值为 255)。若 TTL 达到上限,或者达到最小连接数,而客户端调动的连接数仍不能完成同步过程,则客户端将停止一个超时周期的数据传输以清除所有连接,然后重复上述过程。

下面补充一些常用的NTP时钟服务器:

更多NTP授时服务器请查看:

假设你比较喜欢清华的服务并打算将 ntp.tuna.tsinghua.edu.cn 作为你的授时服务器。下面将简单介绍不同的操作系统该如何操作使得设备能够使用此服务器同步时间。

本部分以主流Windows 10 系统为例演示如何使用NTP服务同步系统时间。

来将此服务器设置为个人选择的时间服务器。

Linux发行版有两个主流程序支持ntp协议:ntpd和chrony。

具体使用和配置参考各自文档: ntpd doc 和 chrony doc

在“系统配置 >日期与时间 >自动设置日期与时间”一栏,填入 ntp.tuna.tsinghua.edu.cn 。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/491701.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-06-14
下一篇2023-06-14

发表评论

登录后才能评论

评论列表(0条)

    保存