埋点是网站和APP等产品进行日常改进及数据分析的数据采集基础,根据采集得到的用户行为数据(例如:页面访问路径,点击了哪一个按钮)进行数据分析,从而更加合理的推送跟优化,增强用户体验。现在市面上有很多第三方埋点服务商,百度统计、友盟、growingIO等。
常见的埋点方法包括:
手动埋点:根据业务需求在需要采集数据的地方进行埋点,是比较常见的埋点手段。
可视化埋点:一些事件带有元素唯一标识。通过在后台进行埋点配置,将元素与要采集信息关联起来,然后自动生成埋点代码嵌入到页面中,目前发展比较火的埋点方式,但是技术上的实现跟推广比较困难
无埋点:简单来说就是没有埋点,前端会采集用户所有的行为跟信息,然后后台再对这些信息进行筛选,由于数据量巨大,对服务器的性能要求很高。
网页布点即布局,网页的三种布局:固定布局,流式布局,弹性布局。
固定布局:以px来设置宽度。
流式布局:以百分比来设置宽度!在宽度较小时,行宽会变得非常窄且难阅读。因此我们要给它添加以px或者em为单位的min-width,从而防止布局变得太窄。
弹性布局:相对于字号来设置宽度,以em为单位设置宽度!由于字号增加时整个布局宽度会加大,因此可能比浏览器窗口宽,导致水平滚动条出现。所以,要给它添加一个max-width为100%。
扩展资料:
埋点分析,是网站分析的一种常用的数据采集方法。数据埋点分为初级、中级、高级三种方式。数据埋点是一种良好的私有化部署数据采集方式。
数据埋点分为初级、中级、高级三种方式,分别为:
初级:在产品、服务转化关键点植入统计代码,据其独立ID确保数据采集不重复(如购买按钮点击率);
中级:植入多段代码,追踪用户在平台每个界面上的系列行为,事件之间相互独立(如打开商品详情页——选择商品型号——加入购物车——下订单——购买完成);
高级:联合公司工程、ETL采集分析用户全量行为,建立用户画像,还原用户行为模型,作为产品分析、优化的基础。
参考资料:百度百科-埋点
问题一:我想请教个问题,经常听他们说网页布点、埋点什么的是什么意思?有什么用么? 埋点:监控用户点击的每一步YUE.on(neoA3, 'click', function(evt) {YUE.preventDefault(evt)YUD.addClass(neoDiv, 'hidden')埋点new Image().src = 'atpanel/jsclick?cache=' + (+ new D鸡te) + '&cartframe=guanbi'})上面红色的字体就是埋点了,它不做页面相关的事情而是把用户当前点击的东西,传到服务器达到记录用户点击的每一步。
问题二:页面埋点 是什么意思 页面埋点的作用,其实就是用于流量分析。而流量的意思,包含了很多:页面浏览
(PV)、独立访问者数量(UV)、IP、页面停留时间、页面操作时间、页面访问次数、按钮点击次数、文件下载次数等。
问题三:java 程序埋点具体是指什么 就是在特定的地方打印日志,看看输出是否符合要求。。
问题四:页面埋点是什么意思 页面设置埋点的方法如下:
在2的位置插入
悬浮导航那里插入点击我连接到2
锚点的名字是可以随便改的。
页面埋点的作用,其实就是用于流量分析。而流量的意思,包含了很多:页面浏览
(PV)、独立访问者数量(UV)、IP、页面停留时间、页面操作时间、页面访问次数、按钮点击次数、文件下载次数等。
问题五:SPM埋点,CNZZ埋点是什么意思 玩QQ农场啊!挖坑种东西咯!
问题六:如何做好数据分析的第一步,数据埋点 整理真实有效的大数据。
问题七:整天看用户埋点数据,知道数据是咋来的吗 我们平时看到的报表复杂而多样,能够通过多种纬度的数据评估用户的使用习惯和对应功能的价值。然而这些报表是如何产生的呢?今天咱们就看看上报数据一步一步变成报表的大致流程。
所有上报的数据都是为了记录一次事件的发生或者描述一个状态,具体的上报数据可以设计为KEY-VALUE的形式或者数据组合的形式。KEY- VALUE的形式主要用来统计简单的计数类上报,如按钮点击的次数,某个选项的值等,KEY用来区分不同的事件,VALUE代表事件发生的次数、状态值等数据组合的主要用来描述一个事件或者状态需要多种属性描述的场景,比如下载成功事件,描述这个事件的数据组合可能包括对应的下载地址、下载渠道来源、下载耗时等信息。
当上报数据设计好后,后续的工作才能正常开展。下面一步一步说。
1、埋点
所谓「埋点」,就是在正常的功能逻辑中添加统计逻辑。拿统计微信右上角「+」的点击次数为例,上报的数据可以采用KEY-VALUE形式,我们定义 KEY为「CLICK_ADD_BTN」,VALUE的值为点击的次数。当用户点击「+」时,展示菜单的代码会通过按钮的「回调」(详见《聊聊同步、异步和回调》)来触发执行,程序猿在业务代码执行完后,又加上了统计代码,把「CLICK_ADD_BTN」对应的VALUE加1,「+」被统计到了一次使用。
2、上报
并不是每统计到一次事件或者状态就会发起数据上报,客户端统计到的数据会先暂时存储在内存或者磁盘上,当用户启动、退出应用程序的时候,或者在其他更合适的时机,将当前周期统计到的事件批量上报到服务器,这样做的目的主要是考虑到与服务器多次建立连接的性能损耗(详见《不得不知的TCP和UDP》) 和流量问题(相同大小的数据分多次发送比一次发送要消耗更多流量),另外客户端在上报具体的统计事件之外,还会将标识用户的ID一并上报,后续用于计算用户相关的数据如日使用用户和留存率等。
3、后台记录日志
数据上报到服务器后,服务器会将客户端上报的原始数据存储到服务器的磁盘中。一般来说,非强实时性的数据上报到服务器后,并不会立即参与计算,获得最终的统计结果,比如一个功能的日使用次数,日用户数,日留存等数据,而是等到服务器负载较低的时间段利用预先配置的计划任务进行离线处理。这样处理的目的是为了节约服务器资源(钱),因为大家肯定不想因为计算统计数据而影响实时业务的处理效率。
4、计算&入库
报表中展示的数据,并不是客户端上报的原始数据,比如「+」的使用次数、使用用户数、日留存率这三组数据,都是通过对客户端上报的「CLICK_ADD_BTN」对应VALUE值的累加并结合上报用户ID二次计算得出的。
如果我们的产品达到微信这种日登陆数五六亿,那么每天上报的统计数据将是海量的,为了从这种海量的数据中计算出「+」的使用次数、使用用户数等信息,就需要用到「数据仓库工具」,比如当下流行的Hive处理工具,它基于Hadoop分布式系统基础框架,利用计算机集群的能力进行分布式计算。当「数据仓库工具」计算出最终的结果后,计划任务会将结果(「+」的日使用次数、日使用用户数等数据)保存到数据库中,也就是「入库」过程。「入库」后的数据才能与前端对接,组成报表展示系统。
一般情况下,原始数据经过数据仓库工具处理后,对应的日志文件还会在服务器上保留一段时间(一般3~7天),以便追溯统计问题,所以,如果发现统计数据有问题问题,一定要及时反馈给负责的程序猿,否则就会「死」无对证咯。
5、展示
当数据「入库」后,报表的展示就水到渠成了。报表系统通过前端页面用户的输入获取查询条件,然后通过后......>>
问题八:产品助理的职位描述中有一条:“知道如何埋数据点,取数据” 是什么意思? 数据埋点,在链接中加一串指定代码吧,我之前做推广的时候做过。
不知道会不会折叠...
问题九:如何通过客户端埋点进行用户画像 目前的大数据在淘宝这种电商平台,尤其是商家可以使用的还是很有限,以前有个数据魔方,现在是专业版的参谋,您可以用付费版的进行店铺和产品的定位规划,所谓精细化就是找准一个类目针对一个人群进行深挖细分,比如大码女装也分为欧美,韩版简约的风格,这些数据可以借助市场行情和来分析,或者地域年龄的分析,对后期推广也有方向性指导意义,希望能帮到你。
问题十:什么是用户行为分析?怎么做用户行为分析? 第一个问题,什么是用户行为分析:
过去的用户行为分析普遍的问题是:分析不聚焦、采集不全面、开发周期长、完全依靠人工埋点、事后分析、维度单一、指标传统。
所以当下可以把用户行为分析定义为:基于用户生命周期管理模型、全面采集所有数据、事中分析、提前预测、实时多维组合、科学维度划分、自定义指标的分析。
第二个问题:怎么做用户行为分析
你提出这个问题,证明你可能暂时没有数据分析团队,或者数据分析团队尚不成熟和完善,所以需要开展数据分析工作的话建议是借助第三方的平台。
这一块业务目前国内已经相对成熟,也有很多不错的合作伙伴可以选择了,硅谷的明星公司可以选择Google Analytics或者Mixpanel等,不过我最推荐的还是国内的数极客。
具体如何开展,我个人的建议是:
选择采用AARRR模型的平台,通过对用户全程行为的跟踪,让我们在经营中运营中,拥有Acquisition(获客)、Activation(激活与活跃)、Retention(留存)、Revenue(收入)、Refer(二次传播) 全程数据分析功能。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)