云服务器的业内名称其实叫做计算单元。所谓计算单元,就是说这个服务器只能算是一个人的大脑,相当于普通电脑的CPU,里面的资源都是有限的。你要获得更好的性能,解决办法一是升级云服务器,二是将其它耗费计算单元资源的软件部署在对应的云服务上。例如数据库有专门的云数据库服务、静态网页和图片有专门的文件存储服务。
亿万克作为中国战略性新兴产业领军品牌,拥有中国第一、世界前二的行业领先技术,致力于新型数据中心建设,构筑云端安全数字底座,为客户提供集产品研发、生产、部署、运维于一体的服务器及IT系统解决方案业务,所有产品和技术完全拥有自主知识产权,应用领域涵盖云计算、数据中心、边缘计算、人工智能、金融、电信、教育、能源等,为客户提供全方位安全自主可控技术服务保障。
从服务器的硬件架构来看,AI服务器是采用异构形式的服务器,在异构方式上可以根据应用的范围采用不同的组合方式,如CPU+GPU、CPU+TPU、CPU+其他的加速卡等。与普通的服务器相比较,在内存、存储、网络方面没有什么差别,主要在是大数据及云计算、人工智能等方面需要更大的内外存,满足各种数据的收集与整理。我们都知道普通的服务器是以CPU为算力的提供者,采用的是串行架构,在逻辑计算、浮点型计算等方面很擅长。因为在进行逻辑判断时需要大量的分支跳转处理,使得CPU的结构复杂,而算力的提升主要依靠堆砌更多的核心数来实现。
但是在大数据、云计算、人工智能及物联网等网络技术的应用,充斥在互联网中的数据呈现几何倍数的增长,这对以CPU为主要算力来源的传统服务提出了严重的考验,并且在目前CPU的制程工艺、单个CPU的核心数已经接近极限,但数据的增加却还在持续,因此必须提升服务器的数据处理能力。因此在这种大环境下,AI服务器应运而生。
现在市面上的AI服务器普遍采用CPU+GPU的形式,因为GPU与CPU不同,采用的是并行计算的模式,擅长梳理密集型的数据运算,如图形渲染、机器学习等。在GPU上,NVIDIA具有明显优势,GPU的单卡核心数能达到近千个,如配置16颗NVIDIA Tesla V100 Tensor Core 32GB GPUs的核心数可过10240个,计算性能高达每秒2千万亿次。且经过市场这些年的发展,也都已经证实CPU+GPU的异构服务器在当前环境下确实能有很大的发展空间。
但是不可否认每一个产业从起步到成熟都需要经历很多的风雨,并且在这发展过程中,竞争是一直存在的,并且能推动产业的持续发展。AI服务器可以说是趋势,也可以说是异军崛起,但是AI服务器也还有一条较长的路要走,以上就是浪潮服务器分销平台十次方的解答。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)