se应该是sem。
1、b代表回归系数
回归系数在回归方程中,表示自变量x对因变量y影响大小的参数。回归系数越大,表示x对y影响越大,正回归系数,表示y随x增大而增大,负回归系数表示y随x增大而减小。例如回归方程试Y=bX+a中,斜率b称为回归系数,表示X每变动一单位,平均而言,Y将变动b单位。
2、sem代表标准误
标准误,即样本均数的标准差,是描述均数抽样分布的离散程度及衡量均数抽样误差大小的尺度,反映的是样本均数之间的变异。标准误不是标准差,是多个样本平均数的标准差。
3、χ2代表卡方值
卡方值是非参数检验中的一个统计量,主要用于非参数统计分析中,它是卡方检验中的一个主要测试指标,卡方检验是一种用途很广的计数资料的假设检验方法,它属于非参数检验的范畴。
主要是比较两个及两个以上样本率( 构成比),以及两个分类变量的关联性分析,其根本思想就是在于比较理论频数和实际频数的吻合程度或拟合优度问题。
4、p代表p值
P值是用来判定假设检验结果的一个参数,也可以根据不同的分布使用分布的拒绝域进行比较。
5、OR代表比值比
OR值又称比值比、优势比,主要指病例组中暴露人数与非暴露人数的比值除以对照组中暴露人数与非暴露人数的比值,是流行病学研究中病例对照研究中的一个常用指标。
6、95%CI代表95%置信区间
置信区间是指由样本统计量所构造的总体参数的估计区间。在统计学中,一个概率样本的置信区间是对这个样本的某个总体参数的区间估计。
置信区间展现的是这个参数的真实值有一定概率落在测量结果的周围的程度,其给出的是被测量参数的测量值的可信程度,即前面所要求的“一个概率”。
扩展资料;
为理解P值的计算过程,用Z表示检验的统计量,ZC表示根据样本数据计算得到的检验统计量值。左侧检验
P值是当μ=μ0时,检验统计量小于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值
右侧检验
P值是当μ=μ0时,检验统计量大于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值
双侧检验
P值是当μ=μ0时,检验统计量大于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值
参考资料来源;百度百科——回归系数
百度百科——sem
百度百科——卡方值
百度百科——p值
百度百科——OR值
百度百科——置信区间
p值就是路径系数的显著性水平,路径系数固定为1,只是设置了一个参考路径,并不影响标准化路径系数的估计。SPSS AMOS 21.0是一款使用结构方程式,探索变量间的关系的软件
轻松地进行结构方程建模(SEM)
快速创建模型以检验变量之间的相互影响及其原因
比普通最客服乘回归和探索性因子分析更进一步
使用Amos 21.0进一步改进您的分析
无论您评估程序,还是开发行为态度模型,您都有可能遇到传统分析技术无能为力的情况。那么,如果您能使用一些复杂的,同时却不需冗长的编程或者学习过程的建模技术,情况会如何呢?
Amos软件和结构方程模型(SEM)助您成功
结构方程模型(SEM)是一种多元分析技术,它包含标准的方法,并在标准方法的基础上进行了扩展。这些方法包括回归技术、因子分析、方差分析和相关分析。Amos21.0让SEM变得容易。它拥有的直观的拖放式绘图工具,让您快速地以演示级路径图定制模型而无需编程。
使用 Amos21.0,让您比单独使用因子分析或回归分析能获得更精确、丰富的综合分析结果,Amos21.0 在构建方程式模型过程中的每一步骤均能提供图形环境,只要在 Amos 的调色板工具和模型评估中以鼠标轻点绘图工具便能指定或更换模型。通过快速的模型建立来检验您的变量是如何互相影响以及为何会发生此影响。
即使有缺失值也能达到精准
Amos 处理缺失值的最大特色就是拥有Full Information Maximum Likelihood ,即使资料不完整,Amos 也不会遗漏任何一个情况,并且会自动计算正确的标准误及适当的统计量,降低您的估算值偏差。
简易但功能强大
(1)AMOS具有的方差分析、协方差,假设检验等一系列基本分析方法。
(2)AMOS的贝叶斯和自抽样的方法应用,这个AMOS最具特色的方法,这个也算是比较前沿的应用,在一定程度上克服了大样本条件的限制,当样本低于200甚至是低于100时,贝叶斯方法的结果仍然比较稳定,尤其是MCMC的结果,该方法也可以提供路径分析间接效应的标准误,这在中介效应的使用方面特别有用,还可以观察估计参数的先验概率分布和事后概率分布,并进行人为设定。另外bootstrap也提供类似模拟的标准误,而且提供bootstrap的ADF、ML、GLS、SLS、ULS等参数估计的方法。另外也为时间序列数据提供自相关图用于侦察序列相关。
(3)AMOS提供方程检验的统计指标,不用说也是很丰富的,需要强调的是有些指标例如SRMR等需要自行设置才能提供,另外比较重要的指标如RMSEA的检验需要自己在figure caption里设置\pclose才能看到,请详情见手册。
(4)指定搜索(specification search),不知翻译的对不对,这个功能在探索变量间的关系上很好用,关系太多,也没什么假设,使用这个功能看看数据本身是什么关系。一般如果关系很复杂,数据量也很大,使用逐步法能节省很多时间。
(5)AMOS可以实现曲线增长模型,这种模型主要用于追踪数据,研究随时间变化的规律,AMOS这方面的发展很好,包括高阶曲线增长及其衍生的模型。不过同样在基于多层线性模型的曲线增长模型上无法实现。
(6)其他的模型例如混合建模,非递归模型等在AMOS里均有实现。同时AMOS高版本提供程序的透明性、可扩展性,与VB、SAS等软件提供接口,使得其程序编写上带来很大的便利,也拓展了应用范围,而且至20版以后AMOS在程序方面也得到了加强,例如程序编写、程序的生成等,其应用前景更加明朗。
技术说明
图形化用户界面
o 通过一个路径图浏览器显示文件夹中所有路径图的描述和缩略图
o 只需用鼠标点击就可选择编程选项
o 只需点击一下鼠标,就可以显示一张包括多个组或者模型的图表
o 查看数据文件内容
o 从数据集中把变量名拖到路径图中
建模能力
o 创建带有观测和隐性变量的结构方程模型(包括特例,如路径分析和纵向数据模型)
o 使用一到两种方法定制候选模型:
-指定每一个候选模型为对模型参数的等同约束的一个集合
-以探索性的方式使用SEM。Amos会尝试许多模型,使用Aikaike信息标准(AIC)和Bayesian信息标准(BIC)统计方法比较模型,并找出最有前途的模型。
o 进行证实性的因子分析:方差分解、变量误差、度量模型和隐性变量
建模
o 使用路径图来定制模型
o 使用绘图工具改变路径图,从而更改模型
o 在路径图上图形化地显示参数估计和拟合测量
o 在路径图上绘图的任何时刻显示自由度
分析能力和统计功能
o 使用完全信息最大似然估计得到更有效、更小偏倚的缺失值估计
o 输入参数值,观察在特定时刻的效应,以及使用模型库的离散函数值的效应
o 使用快速自举模拟,对于任意实验分布下的任何模型参数估计,找到近似分布,包括标准化系数
-评估符合Bollen和Stine自举方式的模型
-计算百分比区间以及偏差修正百分比区间
输出
o 使用有条件的导航帮助;使用增强的文本输出显示选项和表格格式选项
-使用导航面板快速定位并显示输出的各个部分
-将导航面板里的各部分和表格标题链接至右键帮助
-将数值(例如导航面板中显示的p值)链接至"use-it-in-a-sentence"帮助,得到有关数字含义的简单明了的英语说明
Amos 21.0-使用结构方程式,探索变量间的关系
"Amos 使用路径图来定制模型的方法完美自然…Amos是毫无疑问的赢家。"
-J.J.Hox
《Amos,EQS and LISREL for Windows:a comparative review. Structural Equation Modeling》
轻松地进行结构方程建模(SEM)
快速创建模型以检验变量之间的相互影响及其原因
比普通最小二乘回归和探索性因子分析更进一步
使用Amos 21.0进一步改进您的分析
无论您评估程序,还是开发行为态度模型,您都有可能遇到传统分析技术无能为力的情况。那么,如果您能使用一些复杂的,同时却不需冗长的编程或者学习过程的建模技术,情况会如何呢?
Amos软件和结构方程模型(SEM)助您成功
结构方程模型(SEM)是一种多元分析技术,它包含标准的方法,并在标准方法的基础上进行了扩展。这些方法包括回归技术、因子分析、方差分析和相关分析。Amos让SEM变得容易。它拥有的直观的拖放式绘图工具,让您快速地以演示级路径图定制模型而无需编程。
使用 Amos让您比单独使用因子分析或回归分析能获得更精确、丰富的综合分析结果,Amos 21.0在构建方程式模型过程中的每一步骤均能提供图形环境,只要在Amos的调色板工具和模型评估中以鼠标轻点绘图工具便能指定或更换模型。通过快速的模型建立来检验您的变量是如何互相影响以及为何会发生此影响。
系统需要 :
Microsoft Windows 98,Me,NT○R 4.0(SP6),2000或XP
18MB 硬盘空间
系统为Windows 98和Me至少需要128MB内存;系统为NT 4.0,2000和XP至少需要256M内存
Internet Explorer 6
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)