但是在实际的应用中,不仅仅要考虑性能,还需要顾及AI服务器的可编程性和灵活性,而在这方面,从CPU到ASIC则是依次递减,ASIC是将算法固化在芯片上,算法是比较固定的,所以它的性能最好,但是编程性和灵活性就明显受限。
参考链接:https://www.kunqian.cn/news/detail259_1.html
随着大数据、云计算、人工智能等技术的成熟与在各行各业的应用,在人工智能时代,AI服务器这个新兴名词也频繁地出现在人们的视线范围内,有人预测在人工智能时代,AI服务器将会广泛的应用于各个行业,那么AI服务器与普通服务器有什么区别呢?为什么AI服务器在人工智能时代能替代大多数的普通服务器呢?从服务器的硬件架构来看,AI服务器是采用异构形式的服务器,在异构方式上可以根据应用的范围采用不同的组合方式,如CPU+GPU、CPU+TPU、CPU+其他的加速卡等。与普通的服务器相比较,在内存、存储、网络方面没有什么差别,主要在是大数据及云计算、人工智能等方面需要更大的内外存,满足各种数据的收集与整理。
我们都知道普通的服务器是以CPU为算力的提供者,采用的是串行架构,在逻辑计算、浮点型计算等方面很擅长。因为在进行逻辑判断时需要大量的分支跳转处理,使得CPU的结构复杂,而算力的提升主要依靠堆砌更多的核心数来实现。
但是在大数据、云计算、人工智能及物联网等网络技术的应用,充斥在互联网中的数据呈现几何倍数的增长,这对以CPU为主要算力来源的传统服务提出了严重的考验,并且在目前CPU的制程工艺、单个CPU的核心数已经接近极限,但数据的增加却还在持续,因此必须提升服务器的数据处理能力。因此在这种大环境下,AI服务器应运而生。
首先在服务器的硬件架构上,通用服务器采用的是串行架构,主要以CPU为算力提供者,其算力的提升主要靠堆核来实现。而浪潮AI服务器采用的是异构形式,如CPU+GPU、CPU+TPU、CPU+其他的加速卡等不同的组合方式。但目前广泛使用的是CPU+GPU,也因此,业界在谈到AI服务器时,也会将其认为GPU服务器。与普通服务器相比,浪潮AI服务器有出色的图形处理能力和高性能计算能力。在未来,随着智能语音,图像、视频、搜索等AI模型的深入发展,浪潮AI服务器也将被更广泛的使用。欢迎分享,转载请注明来源:夏雨云
评论列表(0条)