如何部署GPU满足服务器工作负载需求

如何部署GPU满足服务器工作负载需求,第1张

选择GPU服务器时首先要考虑业务需求来选择适合的GPU型号。在HPC高性能计算中还需要根据精度来选择,比如有的高性能计算需要双精度,这时如果使用P40或者P4就不合适,只能使用V100或者P100;同时也会对显存容量有要求,比如石油或石化勘探类的计算应用对显存要求比较高;还有些对总线标准有要求,因此选择GPU型号要先看业务需求。

GPU服务器人工智能领域的应用也比较多。在教学场景中,对GPU虚拟化的要求比较高。根据课堂人数,一个老师可能需要将GPU服务器虚拟出30甚至60个虚拟GPU,因此批量Training对GPU要求比较高,通常用V100做GPU的训练。模型训练完之后需要进行推理,因此推理一般会使用P4或者T4,少部分情况也会用V100。

综上所述,选择服务器时不仅需要考虑业务需求,还要考虑性能指标,比如精度、显存类型、显存容量以及功耗等,同时也会有一些服务器是需要水冷、降噪或者对温度、移动性等等方面有特殊的要求,就需要特殊定制的服务器。

欢迎了解更多:网页链接

深度学习是需要配置专门的GPU服务器的:

深度学习的电脑配置要求:

1、数据存储要求

在一些深度学习案例中,数据存储会成为明显的瓶颈。做深度学习首先需要一个好的存储系统,将历史资料保存起来。

主要任务:历史数据存储,如:文字、图像、声音、视频、数据库等。

数据容量:提供足够高的存储能力。

读写带宽:多硬盘并行读写架构提高数据读写带宽。

接口:高带宽,同时延迟低。

传统解决方式:专门的存储服务器,借助万兆端口访问。

缺点:带宽不高,对深度学习的数据读取过程时间长(延迟大,两台机器之间数据交换),成本还巨高。

2、CPU要求

当你在GPU上跑深度网络时,CPU进行的计算很少,但是CPU仍然需要处理以下事情:

(1)数据从存储系统调入到内存的解压计算。

(2)GPU计算前的数据预处理。

(3)在代码中写入并读取变量,执行指令如函数调用,创建小批量数据,启动到GPU的数据传输。

(4)GPU多卡并行计算前,每个核负责一块卡的所需要的数据并行切分处理和控制。

(5)增值几个变量、评估几个布尔表达式、在GPU或在编程里面调用几个函数——所有这些会取决于CPU核的频率,此时唯有提升CPU频率。

传统解决方式:CPU规格很随意,核数和频率没有任何要求。

3、GPU要求

如果你正在构建或升级你的深度学习系统,你最关心的应该也是GPU。GPU正是深度学习应用的核心要素——计算性能提升上,收获巨大。

主要任务:承担深度学习的数据建模计算、运行复杂算法。

传统架构:提供1~8块GPU。

4、内存要求

至少要和你的GPU显存存大小相同的内存。当然你也能用更小的内存工作,但是,你或许需要一步步转移数据。总而言之,如果钱够而且需要做很多预处理,就不必在内存瓶颈上兜转,浪费时间。

主要任务:存放预处理的数据,待GPU读取处理,中间结果存放。

深度学习需要强大的电脑算力,因此对电脑的硬件配置自然是超高的,那么现在普通的高算力电脑需要高配置硬件。

GPU(Graphics Processing Unit),中文名:图形处理器,曾用名:显卡。

1999年,Nvidia(英伟达)公司“ZAO”了GPU,这玩意除了极大的推动了基于PC的游戏市场发展,还彻底改变了并行计算。

没想到二十年后,Nvidia摇身一变成了高大上的AI计算公司,还用GPU绑架了整个人工智能圈子。

我有个客户,几年前新建了一个数据中心,通过P2V技术淘汰了大量X86物理服务器,直接在IT基础设施上成功完成了服务器虚拟化转型,之后就马不停蹄的向云计算转型,而当下,又开始了人工智能转型。

随着智能商业时代的到来,一些大公司对于AI技术的关注和使用也快速增加,这些企业都非常注重自身科技能力的构建。其中,搭建自有AI平台,赋能业务成了这些有实力企业的首选。我这个客户自然也不能免俗,采购了大量的GPU服务器进行部署。

在落地AI场景的同时,客户也希望对建立GPU资源池做一个评估。针对客户需求,做了一些功课。对于AI,我依然只是知道一点皮毛,要说什么算法和模型,我是没戏的,但是可以把交流的学习心得分享一下。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/50888.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-02-25
下一篇2023-02-25

发表评论

登录后才能评论

评论列表(0条)

    保存