sas硬盘读取速度,硬盘的容量和速度有什么吗

sas硬盘读取速度,硬盘的容量和速度有什么吗,第1张

SAS是为存储服务器所设计的硬盘,在读写速度(一般SAS盘都是一万五千转,而SATA盘最高为7200转),使用时间上都远胜于普通SATA硬盘,而且SAS硬盘对于RAID阵列的支持更好。

硬盘容量的话,SAS盘每个G都要比SATA盘贵不少,常见的SAS有160G和320G(因为贵,所以大容量的SAS盘在一般存储服务器中很少见)在大型的容灾备份中心,有达到20T的SAS硬盘。

答案是B,Cache>RAM>硬盘>软盘。

Cache:高速缓冲存储器(Cache)是位于cpu和内存之间的存储器,是一个读写速度比内存更快的存储器,当cpu向内存中读取或写入数据的时候买这些数据也会存入Cache中。

当cup再需要这些数据的时候,就会直接去Cache中读取,而不是内存中,当然,若需要的数据在Cache中没有,cpu会再去内存中读取。

RAM:随机存储器(Random Access Memory)表示既可以从中读取数据,也可以写入数据。当机器电源关闭时,存于其中的数据就会丢失。我们通常购买或升级的内存条就是用作电脑的内存。

内存条(SIMM)就是将RAM集成块集中在一起的一小块电路板,它插在计算机中的内存插槽上,以减少RAM集成块占用的空间。目前市场上常见的内存条有4M/条、8M/条、16M/条等。

硬盘:传输速率(Data Transfer Rate)硬盘的数据传输率是指硬盘读写数据的速度,单位为兆字节每秒(MB/s)。硬盘数据传输率又包括了内部数据传输率和外部数据传输率。

内部传输率(Internal Transfer Rate) 也称为持续传输率(Sustained Transfer Rate),它反映了硬盘缓冲区未用时的性能。内部传输率主要依赖于硬盘的旋转速度。

外部传输率(External Transfer Rate)也称为突发数据传输率(Burst Data Transfer Rate)或接口传输率,它标称的是系统总线与硬盘缓冲区之间的数据传输率,外部数据传输率与硬盘接口类型和硬盘缓存的大小有关。

Fast ATA接口硬盘的最大外部传输率为16.6MB/s,而Ultra ATA接口的硬盘则达到33.3MB/s。

软盘:软盘在个人计算机中作为一种可移贮存硬件,它是用于那些需要被物理移动的小文件的理想选择。软盘有八寸、五又四分之一寸、三寸半之分。当中又分为硬磁区Hard-sectored 及软磁区Soft-Sectored。

软式磁盘驱动器则称FDD,软盘片是覆盖磁性涂料的塑料片,用来储存数据文件,磁盘片的容量有5.25”的1.2MB,3.5”的1.44MB。

扩展资料:

选用基本原则:

1.内部存储器与外部存储器

当确定了存储程序代码和数据所需要的存储空间之后,设计工程师将决定是采用内部存储器还是外部存储器。

通常情况下,内部存储器的性价比最高但灵活性最低,因此设计工程师必须确定对存储的需求将来是否会增长,以及是否有某种途径可以升级到代码空间更大的微控制器。

2.引导存储器

在较大的微控制器系统或基于处理器的系统中,设计工程师可以利用引导代码进行初始化。应用本身通常决定了是否需要引导代码,以及是否需要专门的引导存储器。某些微控制器既有内部存储器也有外部寻址总线,在这种情况下,引导代码将驻留在内部存储器中,而操作代码在外部存储器中。

3.配置存储器

对于现场可编程门阵列(FPGA)或片上系统(SoC),人们使用存储器来存储配置信息。这种存储器必须是非易失性EPROM、EEPROM或闪存。

大多数情况下,FPGA采用SPI接口,但一些较老的器件仍采用FPGA串行接口。串行EEPROM或闪存器件最为常用,EPROM用得较少。

4.程序存储器

所有带处理器的系统都采用程序存储器,但设计工程师必须决定这个存储器是位于处理器内部还是外部。在做出了这个决策之后,设计工程师才能进一步确定存储器的容量和类型。

在大多数嵌入式系统中,人们利用闪存存储程序以便在线升级固件。代码稳定的较老的应用系统仍可以使用ROM和OTP存储器,但由于闪存的通用性,越来越多的应用系统正转向闪存。

5.数据存储器

与程序存储器类似,数据存储器可以位于微控制器内部,或者是外部器件,但这两种情况存在一些差别。

有时微控制器内部包含SRAM(易失性)和EEPROM(非易失)两种数据存储器,但有时不包含内部EEPROM,在这种情况下,当需要存储大量数据时,设计工程师可以选择外部的串行EEPROM或串行闪存器件。

当需要外部高速数据存储器时,通常选择并行SRAM并使用外部串行EEPROM器件来满足对非易失性存储器的要求。一些设计还将闪存器件用作程序存储器,但保留一个扇区作为数据存储区。这种方法可以降低成本、空间并提供非易失性数据存储器。

针对非易失性存储器要求,串行EEPROM器件支持I2C、SPI或微线(Microwire)通讯总线,而串行闪存通常使用SPI总线。由于写入速度很快且带有I2C和SPI串行接口,FRAM在一些系统中得到应用。

6.易失性和非易失性存储器

存储器可分成易失性存储器或者非易失性存储器,前者在断电后将丢失数据,而后者在断电后仍可保持数据。设计工程师有时将易失性存储器与后备电池一起使用,使其表现犹如非易失性器件,但这可能比简单地使用非易失性存储器更加昂贵。

在有连续能量供给的系统中,易失性或非易失性存储器都可以使用,但必须基于断电的可能性做出最终决策。如果存储器中的信息可以在电力恢复时从另一个信源中恢复出来,则可以使用易失性存储器。

选择易失性存储器与电池一起使用的另一个原因是速度。尽管非易失存储器件可以在断电时保持数据,但写入数据(一个字节、页或扇区)的时间较长。

7.串行存储器和并行存储器

在定义了应用系统之后,微控制器的选择是决定选择串行或并行存储器的一个因素。对于较大的应用系统,微控制器通常没有足够大的内部存储器,这时必须使用外部存储器,因为外部寻址总线通常是并行的,外部的程序存储器和数据存储器也将是并行的。

较小的应用系统通常使用带有内部存储器但没有外部地址总线的微控制器。如果需要额外的数据存储器,外部串行存储器件是最佳选择。大多数情况下,这个额外的外部数据存储器是非易失性的。

根据不同的设计,引导存储器可以是串行也可以是并行的。如果微控制器没有内部存储器,并行的非易失性存储器件对大多数应用系统而言是正确的选择。但对一些高速应用,可以使用外部的非易失性串行存储器件来引导微控制器,并允许主代码存储在内部或外部高速SRAM中。

8.EEPROM与闪存

存储器技术的成熟使得RAM和ROM之间的界限变得很模糊,如今有一些类型的存储器(如EEPROM和闪存)组合了两者的特性。这些器件像RAM一样进行读写,并像ROM一样在断电时保持数据,它们都可电擦除且可编程,但各自有它们优缺点。

从软件角度看,独立的EEPROM和闪存器件是类似的,两者主要差别是EEPROM器件可以逐字节地修改,而闪存器件只支持扇区擦除以及对被擦除单元的字、页或扇区进行编程。

对闪存的重新编程还需要使用SRAM,因此它要求更长的时间内有更多的器件在工作,从而需要消耗更多的电池能量。设计工程师也必须确认在修改数据时有足够容量的SRAM可用。

存储器密度是决定选择串行EEPROM或者闪存的另一个因素。市场上可用的独立串行EEPROM器件的容量在128KB或以下,独立闪存器件的容量在32KB或以上。

如果把多个器件级联在一起,可以用串行EEPROM实现高于128KB的容量。很高的擦除/写入耐久性要求促使设计工程师选择EEPROM,因为典型的串行EEPROM可擦除/写入100万次。闪存一般可擦除/写入1万次,只有少数几种器件能达到10万次。

今天,大多数闪存器件的电压范围为2.7V到3.6V。如果不要求字节寻址能力或很高的擦除/写入耐久性,在这个电压范围内的应用系统采用闪存,可以使成本相对较低。

9.EEPROM与FRAM

EEPROM和FRAM的设计参数类似,但FRAM的可读写次数非常高且写入速度较快。然而通常情况下,用户仍会选择EEPROM而不是FRAM,其主要原因是成本(FRAM较为昂贵)、质量水平和供货情况。设计工程师常常使用成本较低的串行EEPROM,除非耐久性或速度是强制性的系统要求。

DRAM和SRAM都是易失性存储器,尽管这两种类型的存储器都可以用作程序存储器和数据存储器,但SRAM主要用于数据存储器。DRAM与SRAM之间的主要差别是数据存储的寿命。只要不断电,SRAM就能保持其数据,但DRAM只有极短的数据寿命,通常为4毫秒左右。

与SRAM相比,DRAM似乎是毫无用处的,但位于微控制器内部的DRAM控制器使DRAM的性能表现与SRAM一样。DRAM控制器在数据消失之前周期性地刷新所存储的数据,所以存储器的内容可以根据需要保持长时间。

由于比特成本低,DRAM通常用作程序存储器,所以有庞大存储要求的应用可以从DRAM获益。它的最大缺点是速度慢,但计算机系统使用高速SRAM作为高速缓冲存储器来弥补DRAM的速度缺陷。

10、云储存

和传统存储相比,云存储系统具有如下优势:优异性能支持高并发、带宽饱和利用。云存储系统将控制流和数据流分离,数据访问时多个存储服务器同时对外提供服务,实现高并发访问。

参考资料:百度百科-CACHE存储器

百度百科-随机存取存储器

百度百科-硬盘

百度百科-软盘

百度百科-存储器

现在服务器的配置层出不穷,读取速度成为了重中之重,那我们改怎么样来提高服务器的读取速度呢?下面壹基比小喻来教你们几个方法。

1.使用内存数据库,、

内存数据库,其实就是将数据放在内存中直接操作的数据库。相对于磁盘,内存的数据读写速度要高出几个数量级,将数据保存在内存中相比从磁盘上访问能够极大地提高应用的性能。内存数据库抛弃了磁盘数据管理的传统方式,基于全部数据都在内存中重新设计了体系结构,并且在数据缓存、快速算法、并行操作方面也进行了相应的改进,所以数据处理速度比传统数据库的数据处理速度要快很多。

但是安全性的问题可以说是内存数据库最大的硬伤。因为内存本身有掉电丢失的天然缺陷,因此我们在使用内存数据库的时候,通常需要,提前对内存上的数据采取一些保护机制,比如备份,记录日志,热备或集群,与磁盘数据库同步等方式。对于一些重要性不高但是又想要快速响应用户请求的部分数据可以考虑内存数据库来存储,同时可以定期把数据固化到磁盘。

2.使用RDD

在大数据云计算相关领域的一些应用中,Spark可以用来加快数据处理速度。Spark的核心是RDD,RDD最早来源与Berkeley实验室的一篇论文《Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing》。现有的数据流系统对两种应用的处理并不高效:一是迭代式算法,这在图应用和机器学习领域很常见;二是交互式数据挖掘工具。这两种情况下,将数据保存在内存中能够极大地提高性能。% n( i. u5 O! m

3.增加缓存

很多web应用是有大量的静态内容,这些静态内容主要都是一些小文件,并且会被频繁的读,采用Apache以及nginx作为web服务器。在web访问量不大的时候,这两个http服务器可以说是非常的迅速和高效,如果负载量很大的时候,我们可以采用在前端搭建cache服务器,将服务器中的静态资源文件缓存到操作系统内存中直接进行读操作,因为直接从内存读取数据的速度要远大于从硬盘读取。这个其实也是增加内存的成本来降低访问磁盘带来的时间消耗。

4.使用SSD

除了对内存方面的优化,还可以对磁盘这边进行优化。跟传统机械硬盘相比,固态硬盘具有快速读写、质量轻、能耗低以及体积小等特点。但是ssd的价格相比传统机械硬盘要贵,有条件的可以使用ssd来代替机械硬盘。/

5.优化数据库)

大部分的服务器请求最终都是要落到数据库中,随着数据量的增加,数据库的访问速度也会越来越慢。想要提升请求处理速度,必须要对原来的单表进行动刀了。目前主流的Linux服务器使用的数据库要属mysql了,如果我们使用mysql存储的数据单个表的记录达到千万级别的话,查询速度会很慢的。根据业务上合适的规则对数据库进行分区分表,可以有效提高数据库的访问速度,提升服务器的整体性能。另外对于业务上查询请求,在建表的时候可以根据相关需求设置索引等,以提高查询速度。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/521429.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-06-21
下一篇2023-06-21

发表评论

登录后才能评论

评论列表(0条)

    保存