这个类有方法:
def
getLines(): Iterator[String]
可以返回按行输入的迭代器,对这个迭代器循环时可以跳过不需要的行(在for中写逻辑)
或者一定数量的行
感觉需要注意的是,如果文件太大了,要避免用那些需要将所有文件内容有读入的函数,例如统计总行数
spark进入txt文件的命令1、首先启动spark-shell进入Spark-shell模式:(进入spark目录下后 输入命令 bin/spark-shell启动spark-shell模式)
2、加载text文件(spark创建sc,可以加载本地文件和HDFS文件创建RDD)
val textFile = sc.textFile("file:///home/hadoop/test1.txt") #注意file:后是三个“/”
注意:加载HDFS文件和本地文件都是使用textFile,区别是添加前缀(hdfs://和file://)进行标识。
3、获取RDD文件textFile所有项(文本文件即总共行数)的计数(还有很多其他的RDD操作,自行百度)
textFile.count() #统计结果显示 1 行
二、在 spark-shell 中读取 HDFS 系统文件“/home/hadoop/test.csv(也可以是txt文件)”(如果该文件不存在, 请先创建),然后,统计出文件的行数:
方法一:
1、加载text文件(spark创建sc,可以加载本地文件和HDFS文件创建RDD)
val textFile = sc.textFile("hdfs:///home/hadoop/test.csv") #注意hdfs:后是三个“/”
注意:加载HDFS文件和本地文件都是使用textFile,区别是添加前缀(hdfs://和file://)进行标识。
2、获取RDD文件textFile所有项的计数
textFile.count() #统计结果显示 1 行
方法二:(Spark shell 默认是读取 HDFS 中的文件,需要先上传文件到 HDFS 中,否则会有“org.apache.hadoop.mapred.InvalidInputException: Input path does not exist: hdfs://localhost:9000/user/hadoop/README.md”的错误。)
1、省去方法一中第一步的命令(1)中的“hdfs://”,其他部分相同,命令如下:
三、编写独立应用程序,读取 HDFS 系统文件“/user/hadoop/test.txt”(如果该文件不存在, 请先创建),然后,统计出文件的行数;通过 sbt 工具将整个应用程序编译打包成 JAR 包, 并将生成的 JAR 包通过 spark-submit 提交到 Spark 中运行命令:
1、首先输入:quit 命令退出spark-shell模式:
2、在终端中执行如下命令创建一个文件夹 sparkapp3 作为应用程序根目录:
cd ~ # 进入用户主文件夹
mkdir ./sparkapp3 # 创建应用程序根目录
mkdir -p ./sparkapp3/src/main/scala # 创建所需的文件夹结构
3、在 ./sparkapp3/src/main/scala 下建立一个名为 SimpleApp.scala 的文件(vim ./sparkapp3/src/main/scala/SimpleApp.scala),添加代码如下:
/* SimpleApp.scala */
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf
object SimpleApp {
def main(args: Array[String]) {
val logFile = "hdfs://localhost:9000/home/hadoop/test.csv"
val conf = new SparkConf().setAppName("Simple Application")
val sc = new SparkContext(conf)
val logData = sc.textFile(logFile, 2)
val num = logData.count()
println("这个文件有 %d 行!".format(num))
}
}
4、该程序依赖 Spark API,因此我们需要通过 sbt 进行编译打包。 ./sparkapp3 中新建文件 simple.sbt(vim ./sparkapp3/simple.sbt),添加内容如下,声明该独立应用程序的信息以及与 Spark 的依赖关系:
name := "Simple Project"
version := "1.0"
scalaVersion := "2.12.10"
libraryDependencies += "org.apache.spark" %% "spark-core" % "3.0.0-preview2"
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)