Kafka到底是个啥?用来干嘛的?
官方定义如下:
翻译过来,大致的意思就是,这是一个实时数据处理系统,可以横向扩展,并高可靠!
实时数据处理 ,从名字上看,很好理解,就是将数据进行实时处理,在现在流行的微服务开发中,最常用实时数据处理平台有 RabbitMQ、RocketMQ 等消息中间件。
这些中间件,最大的特点主要有两个:
在早期的 web 应用程序开发中,当请求量突然上来了时候,我们会将要处理的数据推送到一个队列通道中,然后另起一个线程来不断轮训拉取队列中的数据,从而加快程序的运行效率。
但是随着请求量不断的增大,并且队列通道的数据一致处于高负载,在这种情况下,应用程序的内存占用率会非常高,稍有不慎,会出现内存不足,造成程序内存溢出,从而导致服务不可用。
随着业务量的不断扩张,在一个应用程序内,使用这种模式已然无法满足需求,因此之后,就诞生了各种消息中间件,例如 ActiveMQ、RabbitMQ、RocketMQ等中间件。
采用这种模型,本质就是将要推送的数据,不在存放在当前应用程序的内存中,而是将数据存放到另一个专门负责数据处理的应用程序中,从而实现服务解耦。
消息中间件 :主要的职责就是保证能接受到消息,并将消息存储到磁盘,即使其他服务都挂了,数据也不会丢失,同时还可以对数据消费情况做好监控工作。
应用程序 :只需要将消息推送到消息中间件,然后启用一个线程来不断从消息中间件中拉取数据,进行消费确认即可!
引入消息中间件之后,整个服务开发会变得更加简单,各负其责。
Kafka 本质其实也是消息中间件的一种,Kafka 出自于 LinkedIn 公司,与 2010 年开源到 github。
LinkedIn 的开发团队,为了解决数据管道问题,起初采用了 ActiveMQ 来进行数据交换,大约是在 2010 年前后,那时的 ActiveMQ 还远远无法满足 LinkedIn 对数据传递系统的要求,经常由于各种缺陷而导致消息阻塞或者服务无法正常访问,为了能够解决这个问题,LinkedIn 决定研发自己的消息传递系统, Kafka 由此诞生 。
在 LinkedIn 公司,Kafka 可以有效地处理每天数十亿条消息的指标和用户活动跟踪,其强大的处理能力,已经被业界所认可,并成为大数据流水线的首选技术。
先来看一张图, 下面这张图就是 kafka 生产与消费的核心架构模型 !
如果你看不懂这些概念没关系,我会带着大家一起梳理一遍!
简而言之,kafka 本质就是一个消息系统,与大多数的消息系统一样,主要的特点如下:
与 ActiveMQ、RabbitMQ、RocketMQ 不同的地方在于,它有一个**分区 Partition **的概念。
这个分区的意思就是说,如果你创建的 topic 有5个分区,当你一次性向 kafka 中推 1000 条数据时,这 1000 条数据默认会分配到 5 个分区中,其中每个分区存储 200 条数据。
这样做的目的,就是方便消费者从不同的分区拉取数据,假如你启动 5 个线程同时拉取数据,每个线程拉取一个分区,消费速度会非常非常快!
这是 kafka 与其他的消息系统最大的不同!
和其他的中间件一样,kafka 每次发送数据都是向 Leader 分区发送数据,并顺序写入到磁盘,然后 Leader 分区会将数据同步到各个从分区 Follower ,即使主分区挂了,也不会影响服务的正常运行。
那 kafka 是如何将数据写入到对应的分区呢?kafka中有以下几个原则:
与生产者一样,消费者主动的去kafka集群拉取消息时,也是从 Leader 分区去拉取数据。
这里我们需要重点了解一个名词: 消费组 !
考虑到多个消费者的场景,kafka 在设计的时候,可以由多个消费者组成一个消费组,同一个消费组者的消费者可以消费同一个 topic 下不同分区的数据,同一个分区只会被一个消费组内的某个消费者所消费,防止出现重复消费的问题!
但是不同的组,可以消费同一个分区的数据!
你可以这样理解,一个消费组就是一个客户端,一个客户端可以由很多个消费者组成,以便加快消息的消费能力。
但是,如果一个组下的消费者数量大于分区数量,就会出现很多的消费者闲置。
如果分区数量大于一个组下的消费者数量,会出现一个消费者负责多个分区的消费,会出现消费性能不均衡的情况。
因此,在实际的应用中,建议消费者组的 consumer 的数量与 partition 的数量保持一致!
光说理论可没用,下面我们就以 centos7 为例,介绍一下 kafka 的安装和使用。
kafka 需要 zookeeper 来保存服务实例的元信息,因此在安装 kafka 之前,我们需要先安装 zookeeper。
zookeeper 安装环境依赖于 jdk,因此我们需要事先安装 jdk
下载zookeeper,并解压文件包
创建数据、日志目录
配置zookeeper
重新配置 dataDir 和 dataLogDir 的存储路径
最后,启动 Zookeeper 服务
到官网 http://kafka.apache.org/downloads.html 下载想要的版本,我这里下载是最新稳定版 2.8.0 。
按需修改配置文件 server.properties (可选)
server.properties 文件内容如下:
其中有四个重要的参数:
可根据自己需求修改对应的配置!
启动 kafka 服务
创建一个名为 testTopic 的主题,它只包含一个分区,只有一个副本:
运行 list topic 命令,可以看到该主题。
输出内容:
Kafka 附带一个命令行客户端,它将从文件或标准输入中获取输入,并将其作为消息发送到 Kafka 集群。默认情况下,每行将作为单独的消息发送。
运行生产者,然后在控制台中键入一些消息以发送到服务器。
输入两条内容并回车:
Kafka 还有一个命令行使用者,它会将消息转储到标准输出。
输出结果如下:
本文主要围绕 kafka 的架构模型和安装环境做了一些初步的介绍,难免会有理解不对的地方,欢迎网友批评、吐槽。
由于篇幅原因,会在下期文章中详细介绍 java 环境下 kafka 应用场景!
这几天在学习kafka,看了一些书和博文,看到了一篇博文感受颇深(深感大学的课程其实是非常重要的),所以这里就把这篇文章精简一下,顺便当给自己巩固一下知识。
众所周知kafka的吞吐量比一般的消息队列要高,号称the fastest,那他是如何做到的,让我们从以下几个方面分析一下原因。
生产者负责写入数据,Kafka会将消息持久化到磁盘,保证不会丢失数据,Kafka采用了俩个技术提高写入的速度。
1.顺序写入:在大学的计算机组成(划重点)里我们学过,硬盘是机械结构,需要指针寻址找到存储数据的位置,所以,如果是随机IO,磁盘会进行频繁的寻址,导致写入速度下降。Kafka使用了顺序IO提高了磁盘的写入速度,Kafka会将数据顺序插入到文件末尾,消费者端通过控制偏移量来读取消息,这样做会导致数据无法删除,时间一长,磁盘空间会满,kafka提供了2种策略来删除数据:基于时间删除和基于partition文件的大小删除。
2.Memory Mapped Files:这个和Java NIO中的内存映射基本相同,在大学的计算机原理里我们学过(划重点),mmf直接利用操作系统的Page来实现文件到物理内存的映射,完成之后对物理内存的操作会直接同步到硬盘。mmf通过内存映射的方式大大提高了IO速率,省去了用户空间到内核空间的复制。它的缺点显而易见--不可靠,当发生宕机而数据未同步到硬盘时,数据会丢失,Kafka提供了produce.type参数来控制是否主动的进行刷新,如果kafka写入到mmp后立即flush再返回给生产者则为同步模式,反之为异步模式。
在这之前先来了解一下零拷贝:平时从服务器读取静态文件时,服务器先将文件从复制到内核空间,再复制到用户空间,最后再复制到内核空间并通过网卡发送出去,而零拷贝则是直接从内核到内核再到网卡,省去了用户空间的复制。
Kafka把所有的消息存放到一个文件中,当消费者需要数据的时候直接将文件发送给消费者,比如10W的消息共10M,全部发送给消费者,10M的消息在内网中传输是非常快的,假如需要1s,那么kafka的tps就是10w。Zero copy对应的是Linux中sendfile函数,这个函数会接受一个offsize来确定从哪里开始读取。现实中,不可能将整个文件全部发给消费者,他通过消费者传递过来的偏移量来使用零拷贝读取指定内容的数据返回给消费者。
Kafka快的原因是他将一个个消息变成一个文件,通过mmp提高IO速度,写入时在末尾直接添加,读取时通过偏移量直接返回。
不能因为快我们的消息队列就只选择Kafka,技术的选型还是要结合具体的业务场景,合适的才是最好的,不能只以快论英雄,这一点相信男同胞们深有体会。具体不同MQ的使用场景可以看我之前的文章,《Kafka还是RabbitMQ?》。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)