5、垃圾回收机制

5、垃圾回收机制,第1张

JVM的垃圾回收机制主要涉及三个方面的问题:

1.JVM有哪些垃圾回收算法?各自有什么优势?

2.CMS垃圾回收器是如何工作的?有哪些阶段?

3.服务卡顿的元凶到底是什么?

Java不用程序来管理内存的回收,但这些内存是如何回收的?

其实,JVM有专门的线程在做这件事情。当内容空间达到一定条件时,会自动触发,这个过程就叫GC,负责GC的组件被称为垃圾回收器。JVM规范没有规定垃圾回收器怎么实现,它只需要保证不要把正在使用的对象回收掉就可以。在现在的服务器环境中,经常被使用的垃圾回收器有CMS和G1,但JVM还有其它几个常见的垃圾回收器。

GC的过程是先找到活跃的对象,然后把其他不活跃的对象判定为垃圾,然后删除,所以GC只与活跃的对象有关,和堆的大小无关。

接下来学习下分代垃圾回收的内存划分和GC过程,再有就是常见的垃圾回收器。

这篇比较重要,因为几乎所有的垃圾回收器都是在这些基本思想上演化出来的。

GC的第一步就是找出活跃的对象,根据GC Roots遍历所有的可达对象,这个过程就叫作标记。

如上图所示,圆圈代表对象,绿色的代表GC Roots,红色的代表可以追溯到的对象,标记后,有多个灰色的圆圈,代表都是可被回收的对象。

清除阶段就是把未被标记的对象回收掉。

这种方式有一个明显的问题,会产生碎片空间。

比如申请了1k、2k、3k、4k、5k的内存

由于某些原因,2k和4k的内存不再使用,交给垃圾回收器回收。

解决碎片问题,就需要进行内存整理。

有一个思路就是提送一个对等的内存空间,将存活的对象复制过去,然后清除员内存空间。

在程序设计时,一般遇到扩缩容或者碎片整理问题时,复制算法都是非常有效的。比如:HashMap的扩容使用的是同样的思路,Redis的rehash也是如此。

整个过程如下图

这种方式看似完美,解决了碎片问题,但是弊端也非常明显,它浪费了一半的内存空间来做这个事情,如果原本资源就有限,这就是一种无法容忍的浪费。

不用分配一个对等的空间也是可以完成内存的整理工作。

可以把内存想象成一个非常大的数组,根据随机的index删除了一些数据,那么对数组的清理不需要另外一个数组来进行支持的,使用程序就可以。

主要思路是移动所有的存活对象,且按照内存地址顺序依次排列,然后将末端内存地址以后的内存全部收回。

对象的引用关系一般是非常复杂的,从效率上来说,一般整理算法是要低于复制算法的。

JVM的垃圾回收器,都是对以上几种朴素算法的结合使用,简单看一下它们的特点:

效率一般,缺点是回造成内存碎片的问题。

复制算法是所有算法里面效率最高的,缺点是造成一定的空间浪费。

效率比前两者要差,但没有空间浪费,也消除了内存碎片问题。

所以没有最优的算法,只有最合适的算法。

JVM是计算节点,而不是存储节点。最理想的情况就是对象使用完成之后,它的生命周期立马就结束了,而那些被频繁访问的资源,我们希望它能够常驻在内存里。

对象大致可以分为两类:

1.大部分对象的生命周期都很短

2.其他对象则很可能会存活很长时间

现在的垃圾回收器都会在物理上或者逻辑上,把这两类对象进行分区。我们把死的快的对象所占的区域叫年轻代(Young Generation)。把其他活的长的对象所占的区域叫作老年代(Old Generation),老年代在有时候会叫作Tenured Generation。

年轻代使用的垃圾回收算法是复制算法,因为年轻代发生GC后,会有非常少的对象存活,复制这部分对象是非常高效的

年轻代的内部分区

如图所示,年轻代分为:一个伊甸园空间(Eden),两个幸存者空间(Survivor)。

当年轻代中的Eden区分配满的时候,就会触发年轻代的GC(Minor GC),具体过程如下

1.在Eden区执行了第一次GC之后,存活的对象会被移动到其中一个Suvivor分区(from);

2.Eden区再次GC,这是会采用复制算法,将Eden和from区一起清理,存活的对象会被复制到to区;接下来只需要清空from区就可以了

在整个过程中总会有一个Survivor分区是空置的。Eden、from、to的默认比例是8:1:1,所以只会造成10%的空间浪费。

这个比例是由参数-XX:SurvivorRatio进行配置的(默认为8)。

补充下不常提到的TLAB。TLAB全称是Thread Local Allocation Buffer,JVM默认给每个线程开辟一个buffer区域,用来加速对象分配。这个buffer就放在Eden区中。

这个道理和Java语言中的ThreadLocal类似,避免了对公共区的操作,以及一些锁竞争。

老年代一般使用"标记-清除"、"标记-整理"算法。因为老年代的对象存活率一般是比较高的,空间又比较大,拷贝起来并不划算,不如采取就地收集的方式。

对象进入老年代的途径分类

如果对象够老,会通过"提升"进入老年代。关于对象老不老,是通过它的年龄来判断的。每发生一次Minor GC,存活下来的对象年龄都会加1,直到达到一定的阀值,就会提升到老年代,

这些对象如果变的不可达,直到老年代发生GC的时候才会被清理掉。

这个阀值可以通过参数 -XX:+MaxTenuringThreshold进行配置,最大值是15,因为它是用4bit存储的(所以把这个值调的很大的文章,是没有什么根据的)。

每次存活的对象,都会放入其中一个幸存区,这个区域默认比例是10%,但无法保证每次存活的对象都小于10%,当Survivor空间不够,就需要依赖其它内存(老年代)进行分配担保。这个时候,对象也会直接在老年代上分配。

超出某个大小的对象直接在老年代分配,通过参数设置-XX:PretenureSizeThreshold进行配置的,默认为0,默认全部在Eden区进行分配。

有的垃圾回收算法,并不要求age必须达到15才能晋升到老年代,它会使用一些动态的计算方法。比如,如果幸存区中相同年龄对象大小的和,大于幸存区的一半,大于或者等于age的对象将会直接进入老年代。

这些动态判定一半不受外部控制

对象的引用关系时一个巨大的网状,有的对象在Eden区,有的可能在老年代,那么这种跨代的引用是如何处理的呢?由于Minor GC是单独发生的,如果一个老年代的对象引用了它,如何确保能够让年轻代的对象存活呢?

对于是、否的判断,我们通常都会用到Bitmap(位图)和布隆过滤器来加快搜索的速度,需要另外再学习下(如果不知道这两个概念的话)

JVM也是用了类似的方法。其实,老年代是被分成众多的卡页(Card Page)的(一般数量是2的次幂)

卡表(Card Table)就是用于标记卡页状态的一个集合,每个卡表对应一个卡页。

如果年轻代有对象分配,而且老年代有对象指向这个新对象,那么这个老年代对象所对应内存的卡页就会被标识为dirty,卡表只需要非常小的存储空间就可以保留这些状态,垃圾回收时,就可以先读这个卡表,进行快速的判断。

接下来学习HotSpot的几个垃圾回收器,每种回收器都有各自的特点。在平常的GC优化时,一定要清楚现在用的是那种垃圾回收器。

下图包含了年轻代和老年代的划分,方便接下来的学习参考

处理GC的只有一条线程,并且在垃圾回收的过程中暂停一切用户线程。

这是最简单的垃圾回收器,虽然简单,但十分高效,通常用在客户端应用上。因为客户端应用不会频繁创建很多对象,用户也不会感觉出明显的卡顿。相反,它使用的资源更少,也更轻量级。

ParNew是Serial的多线程版本,由多条GC线程并行地进行垃圾清理。清理过程依然要停止用户线程。追求低停顿时间,与Serial唯一区别就是使用了多线程进行垃圾回收,在多CPU环境下性能比Serial会有一定程度的提升;但线程切换需要额外的开销,因此在单CPU环境中表现不如Serial。

另一个多线程版本的垃圾回收器。但与ParNew是有区别的

1.Parallel Scavenge:追求CPU吞吐量,能够在较短时间内完成指定任务,适合没有交互的后台计算,弱交互强计算。

2.ParNew:追求降低用户停顿时间,适合交互式应用,强交互弱计算。

与年轻代的Serial垃圾回收器对应,都是单线程版本,同样适合客户端使用。

年轻代Serial,使用复制算法。

老年代的Old Serial,使用标记-整理算法。

Parallel Old回收器是Parallel Scavenge 的老年代版本,追求CPU吞吐量。

CMS(Concurrent Mark Sweep)回收器是以获取最短GC停顿时间为目标的收集器,它在垃圾回收时使得用户线程和GC线程能够并发执行,因此在垃圾回收过程中用户也不会感到明显的卡顿。

长期看来,CMS垃圾回收器,是要被G1等垃圾回收器替换掉的,在Java8之后,使用它将会抛出一个警告!

除了上面几个垃圾回收器,我们还有G1、ZGC等更加高级的垃圾回收器,它们都有专门的配置参数来使其生效。

通过-XX:PrintCommandLineFlags参数,可以查看当前Java版本默认使用的垃圾回收器。在Java13中,默认的回收器就是G1。

以下是一些配置参数:

1.-XX:+UseSerialGC 年轻代和年老代回收器

2.-XX:+UseParNewGC 年轻代使用ParNew,老年代使用Serial Old。

3.-XX:+UseParallelOldGC 年轻代和老年代哦都市用并行回收器。

4.-XX:+UseConcMarkSweepGC 表示年轻代使用ParNew,老年代使用CMS。

5.-XX:+UseG1GC 使用G1垃圾回收器

6.-XX:+UseZGC 使用ZGC垃圾回收器

这些垃圾回收器的关系还是比较复杂的,请看下图

目前Java8还是主流使用版本,从Java8升级到高版本的Java体系是有一定成本的,所以CMS垃圾回收器还会持续一段时间

抛个问题,如果在垃圾回收的时候,又有新的对象进入怎么办?

为了保住程序不乱套,最好的办法就是暂停用户的一切线程,也就是在这段时间,是不能new对象的,只能等待,表象是在JVM上就是短暂的卡顿,什么都干不了,这个现象叫作Stop The World。

标记阶段,大多数是要STW的。如果不暂停用户进程,在标记对象的时候,有可能有其它用户线程会产生一些新的对象和引用,造成混乱。

现在的垃圾回收器,都会尽量去减少这个过程。但即使最先进的ZGC回收器,也会有短暂的STW过程。我们要做的就是在现有基础设施上,尽量减少GC停顿。

举例说明下

某个高并发服务的峰值流量是10万次/秒,后面有10台负载均衡的机器,那么每台机器平均下来需要1w/s。假如某台机器在这段时间内发生了STW,持续了一秒,那么至少需要10ms就可以返回的1万个请求,需要至少等待1秒。

在用户那里的表现就是系统发生了卡顿。如果我们的GC非常的频繁。这种卡顿就会特别的明显,严重影响用户体验。

虽然说Java为我们提供了非常棒的自动内存管理机制,但也不能滥用,因为它是有STW硬伤的。

介绍了堆的具体分区,年轻代和老年代。介绍了多个常用的垃圾回收器,不同的垃圾回收器有不同的特点。各种垃圾回收器都是为了解决头疼的STW问题,让GC时间更短,停顿更短,吞吐量更大。

接触了很多名词,总结如下

1.Mark

2.Sweep

3.Copy

4.Compact

1.Young generation

2.Survivor

3.Eden

4.Old Generation |Tenured Generation

5.GC

--1.Minor GC

--2.Major GC

1.weak generational hypothesis

2.分配担保

3.提升

4.卡片标记

5.STW

PHP 有一个非常简单的垃圾收集器,它实际上将对不再位于内存范围(scope)中的对象进行垃圾收集。垃圾收集的内部方式是使用一个引用计数器,因此当计数器达到 0 时(意味着对该对象的引用都不可用),对象将被当作垃圾收集并从内存中删除。

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

每一种计算机语言都有自己的自动垃圾回收机制,让程序员不必过分关心程序内存分配,php也不例外,但是在面向对象编程(OOP)编程中,有些对象需要显式的销毁;防止程序执行内存溢出。

一、PHP 垃圾回收机制(Garbage Collector 简称GC)

在PHP中,没有任何变量指向这个对象时,这个对象就成为垃圾。PHP会将其在内存中销毁;这是PHP的GC垃圾处理机制,防止内存溢出。

当一个PHP线程结束时,当前占用的所有内存空间都会被销毁,当前程序中所有对象同时被销毁。GC进程一般都跟着每起一个SESSION而开始运行的.gc目的是为了在session文件过期以后自动销毁删除这些文件.

二、__destruct /unset

__destruct() 析构函数,是在垃圾对象被回收时执行。

unset 销毁的是指向对象的变量,而不是这个对象。

三、 Session 与 GC

由于PHP的工作机制,它并没有一个daemon线程来定期的扫描Session信息并判断其是否失效,当 一个有效的请求发生时,PHP 会根据全局变量 session.gc_probability和session.gc_divisor的值,来决定是否启用一个GC, 在默认情况下,session.gc_probability=1, session.gc_divisor =100也就是说有1%的可能性启动GC(也就是说100个请求中只有一个gc会伴随100个中的某个请求而启动).

GC的工作就是扫描所有的Session信息,用当前时间减去session最后修改的时间,同session.gc_maxlifetime参数进行比较,如果生存时间超过gc_maxlifetime(默认24分钟),就将该session删除。

但是,如果你Web服务器有多个站点,多个站点时,GC处理session可能会出现意想不到的结果,原因就是:GC在工作时,并不会区分不同站点的session.

那么这个时候怎么解决呢?

1. 修改session.save_path,或使用session_save_path()让每个站点的session保存到一个专用目录,

2. 提供GC的启动率,自然,GC的启动率提高,系统的性能也会相应减低,不推荐。

3. 在代码中判断当前session的生存时间,利用session_destroy()删除.

前面是我自己理解的后面是复制的

java中垃圾回收以前听老师讲好像是内存满了他才去做一次整体垃圾回收,在回收垃圾的同时会调用finalize方法.你在构造一个类时可以构造一个类时覆盖他的finalize方法以便于该类在被垃圾回收时执行一些代码,比如释放资源.

1.JVM的gc概述

gc即垃圾收集机制是指jvm用于释放那些不再使用的对象所占用的内存。java语言并不要求jvm有gc,也没有规定gc如何工作。不过常用的jvm都有gc,而且大多数gc都使用类似的算法管理内存和执行收集操作。

在充分理解了垃圾收集算法和执行过程后,才能有效的优化它的性能。有些垃圾收集专用于特殊的应用程序。比如,实时应用程序主要是为了避免垃圾收集中断,而大多数OLTP应用程序则注重整体效率。理解了应用程序的工作负荷和jvm支持的垃圾收集算法,便可以进行优化配置垃圾收集器。

垃圾收集的目的在于清除不再使用的对象。gc通过确定对象是否被活动对象引用来确定是否收集该对象。gc首先要判断该对象是否是时候可以收集。两种常用的方法是引用计数和对象引用遍历。

1.1.引用计数

引用计数存储对特定对象的所有引用数,也就是说,当应用程序创建引用以及引用超出范围时,jvm必须适当增减引用数。当某对象的引用数为0时,便可以进行垃圾收集。

1.2.对象引用遍历

早期的jvm使用引用计数,现在大多数jvm采用对象引用遍历。对象引用遍历从一组对象开始,沿着整个对象图上的每条链接,递归确定可到达(reachable)的对象。如果某对象不能从这些根对象的一个(至少一个)到达,则将它作为垃圾收集。在对象遍历阶段,gc必须记住哪些对象可以到达,以便删除不可到达的对象,这称为标记(marking)对象。

下一步,gc要删除不可到达的对象。删除时,有些gc只是简单的扫描堆栈,删除未标记的未标记的对象,并释放它们的内存以生成新的对象,这叫做清除(sweeping)。这种方法的问题在于内存会分成好多小段,而它们不足以用于新的对象,但是组合起来却很大。因此,许多gc可以重新组织内存中的对象,并进行压缩(compact),形成可利用的空间。

为此,gc需要停止其他的活动活动。这种方法意味着所有与应用程序相关的工作停止,只有gc运行。结果,在响应期间增减了许多混杂请求。另外,更复杂的 gc不断增加或同时运行以减少或者清除应用程序的中断。有的gc使用单线程完成这项工作,有的则采用多线程以增加效率。

2.几种垃圾回收机制

2.1.标记-清除收集器

这种收集器首先遍历对象图并标记可到达的对象,然后扫描堆栈以寻找未标记对象并释放它们的内存。这种收集器一般使用单线程工作并停止其他操作。

2.2.标记-压缩收集器

有时也叫标记-清除-压缩收集器,与标记-清除收集器有相同的标记阶段。在第二阶段,则把标记对象复制到堆栈的新域中以便压缩堆栈。这种收集器也停止其他操作。

2.3.复制收集器

这种收集器将堆栈分为两个域,常称为半空间。每次仅使用一半的空间,jvm生成的新对象则放在另一半空间中。gc运行时,它把可到达对象复制到另一半空间,从而压缩了堆栈。这种方法适用于短生存期的对象,持续复制长生存期的对象则导致效率降低。

2.4.增量收集器

增量收集器把堆栈分为多个域,每次仅从一个域收集垃圾。这会造成较小的应用程序中断。

2.5.分代收集器

这种收集器把堆栈分为两个或多个域,用以存放不同寿命的对象。jvm生成的新对象一般放在其中的某个域中。过一段时间,继续存在的对象将获得使用期并转入更长寿命的域中。分代收集器对不同的域使用不同的算法以优化性能。

2.6.并发收集器

并发收集器与应用程序同时运行。这些收集器在某点上(比如压缩时)一般都不得不停止其他操作以完成特定的任务,但是因为其他应用程序可进行其他的后台操作,所以中断其他处理的实际时间大大降低。

2.7.并行收集器

并行收集器使用某种传统的算法并使用多线程并行的执行它们的工作。在多cpu机器上使用多线程技术可以显著的提高java应用程序的可扩展性。

3.Sun HotSpot

1.4.1 JVM堆大小的调整

Sun HotSpot 1.4.1使用分代收集器,它把堆分为三个主要的域:新域、旧域以及永久域。Jvm生成的所有新对象放在新域中。一旦对象经历了一定数量的垃圾收集循环后,便获得使用期并进入旧域。在永久域中jvm则存储class和method对象。就配置而言,永久域是一个独立域并且不认为是堆的一部分。

下面介绍如何控制这些域的大小。可使用-Xms和-Xmx 控制整个堆的原始大小或最大值。

下面的命令是把初始大小设置为128M:

java –Xms128m

–Xmx256m为控制新域的大小,可使用-XX:NewRatio设置新域在堆中所占的比例。

下面的命令把整个堆设置成128m,新域比率设置成3,即新域与旧域比例为1:3,新域为堆的1/4或32M:

java –Xms128m –Xmx128m

–XX:NewRatio =3可使用-XX:NewSize和-XX:MaxNewsize设置新域的初始值和最大值。

下面的命令把新域的初始值和最大值设置成64m:

java –Xms256m –Xmx256m –Xmn64m

永久域默认大小为4m。运行程序时,jvm会调整永久域的大小以满足需要。每次调整时,jvm会对堆进行一次完全的垃圾收集。

使用-XX:MaxPerSize标志来增加永久域搭大小。在WebLogic Server应用程序加载较多类时,经常需要增加永久域的最大值。当jvm加载类时,永久域中的对象急剧增加,从而使jvm不断调整永久域大小。为了避免调整,可使用-XX:PerSize标志设置初始值。

下面把永久域初始值设置成32m,最大值设置成64m。

java -Xms512m -Xmx512m -Xmn128m -XX:PermSize=32m -XX:MaxPermSize=64m

默认状态下,HotSpot在新域中使用复制收集器。该域一般分为三个部分。第一部分为Eden,用于生成新的对象。另两部分称为救助空间,当Eden 充满时,收集器停止应用程序,把所有可到达对象复制到当前的from救助空间,一旦当前的from救助空间充满,收集器则把可到达对象复制到当前的to救助空间。From和to救助空间互换角色。维持活动的对象将在救助空间不断复制,直到它们获得使用期并转入旧域。使用-XX:SurvivorRatio 可控制新域子空间的大小。

同NewRation一样,SurvivorRation规定某救助域与Eden空间的比值。比如,以下命令把新域设置成64m,Eden占32m,每个救助域各占16m:

java -Xms256m -Xmx256m -Xmn64m -XX:SurvivorRation =2

如前所述,默认状态下HotSpot对新域使用复制收集器,对旧域使用标记-清除-压缩收集器。在新域中使用复制收集器有很多意义,因为应用程序生成的大部分对象是短寿命的。理想状态下,所有过渡对象在移出Eden空间时将被收集。如果能够这样的话,并且移出Eden空间的对象是长寿命的,那么理论上可以立即把它们移进旧域,避免在救助空间反复复制。但是,应用程序不能适合这种理想状态,因为它们有一小部分中长寿命的对象。最好是保持这些中长寿命的对象并放在新域中,因为复制小部分的对象总比压缩旧域廉价。为控制新域中对象的复制,可用-XX:TargetSurvivorRatio控制救助空间的比例(该值是设置救助空间的使用比例。如救助空间位1M,该值50表示可用500K)。该值是一个百分比,默认值是50。当较大的堆栈使用较低的 sruvivorratio时,应增加该值到80至90,以更好利用救助空间。用-XX:maxtenuring threshold可控制上限。

为放置所有的复制全部发生以及希望对象从eden扩展到旧域,可以把MaxTenuring Threshold设置成0。设置完成后,实际上就不再使用救助空间了,因此应把SurvivorRatio设成最大值以最大化Eden空间,设置如下:

java … -XX:MaxTenuringThreshold=0 –XX:SurvivorRatio=50000 …

4.BEA JRockit JVM的使用

Bea WebLogic 8.1使用的新的JVM用于Intel平台。在Bea安装完毕的目录下可以看到有一个类似于jrockit81sp1_141_03的文件夹。这就是 Bea新JVM所在目录。不同于HotSpot把Java字节码编译成本地码,它预先编译成类。JRockit还提供了更细致的功能用以观察JVM的运行状态,主要是独立的GUI控制台(只能适用于使用Jrockit才能使用jrockit81sp1_141_03自带的console监控一些cpu及 memory参数)或者WebLogic Server控制台。

Bea JRockit JVM支持4种垃圾收集器:

4.1.1.分代复制收集器

它与默认的分代收集器工作策略类似。对象在新域中分配,即JRockit文档中的nursery。这种收集器最适合单cpu机上小型堆操作。

4.1.2.单空间并发收集器

该收集器使用完整堆,并与背景线程共同工作。尽管这种收集器可以消除中断,但是收集器需花费较长的时间寻找死对象,而且处理应用程序时收集器经常运行。如果处理器不能应付应用程序产生的垃圾,它会中断应用程序并关闭收集。

分代并发收集器这种收集器在护理域使用排它复制收集器,在旧域中则使用并发收集器。由于它比单空间共同发生收集器中断频繁,因此它需要较少的内存,应用程序的运行效率也较高,注意,过小的护理域可以导致大量的临时对象被扩展到旧域中。这会造成收集器超负荷运作,甚至采用排它性工作方式完成收集。

4.1.3.并行收集器

该收集器也停止其他进程的工作,但使用多线程以加速收集进程。尽管它比其他的收集器易于引起长时间的中断,但一般能更好的利用内存,程序效率也较高。

默认状态下,JRockit使用分代并发收集器。要改变收集器,可使用-Xgc:,对应四个收集器分别为 gencopy,singlecon,gencon以及parallel。可使用-Xms和-Xmx设置堆的初始大小和最大值。要设置护理域,则使用- Xns:java –jrockit –Xms512m –Xmx512m –Xgc:gencon –Xns128m…尽管JRockit支持-verbose:gc开关,但它输出的信息会因收集器的不同而异。JRockit还支持memory、 load和codegen的输出。

注意 :如果 使用JRockit JVM的话还可以使用WLS自带的console(C:\bea\jrockit81sp1_141_03\bin下)来监控一些数据,如cpu, memery等。要想能构监控必须在启动服务时startWeblogic.cmd中加入-Xmanagement参数。

5.如何从JVM中获取信息来进行调整

-verbose.gc开关可显示gc的操作内容。打开它,可以显示最忙和最空闲收集行为发生的时间、收集前后的内存大小、收集需要的时间等。打开- xx:+ printgcdetails开关,可以详细了解gc中的变化。打开-XX: + PrintGCTimeStamps开关,可以了解这些垃圾收集发生的时间,自jvm启动以后以秒计量。最后,通过-xx: + PrintHeapAtGC开关了解堆的更详细的信息。为了了解新域的情况,可以通过-XX:=PrintTenuringDistribution开关了解获得使用期的对象权。

6.Pdm系统JVM调整

6.1.服务器:前提内存1G 单CPU

可通过如下参数进行调整:-server 启用服务器模式(如果CPU多,服务器机建议使用此项)

-Xms,-Xmx一般设为同样大小。 800m

-Xmn 是将NewSize与MaxNewSize设为一致。320m

-XX:PerSize 64m

-XX:NewSize 320m 此值设大可调大新对象区,减少Full GC次数

-XX:MaxNewSize 320m

-XX:NewRato NewSize设了可不设。

-XX: SurvivorRatio

-XX:userParNewGC 可用来设置并行收集

-XX:ParallelGCThreads 可用来增加并行度

-XXUseParallelGC 设置后可以使用并行清除收集器

-XX:UseAdaptiveSizePolicy 与上面一个联合使用效果更好,利用它可以自动优化新域大小以及救助空间比值

6.2.客户机:通过在JNLP文件中设置参数来调整客户端JVM

JNLP中参数:initial-heap-size和max-heap-size

这可以在framework的RequestManager中生成JNLP文件时加入上述参数,但是这些值是要求根据客户机的硬件状态变化的(如客户机的内存大小等)。建议这两个参数值设为客户机可用内存的60%(有待测试)。为了在动态生成JNLP时以上两个参数值能够随客户机不同而不同,可靠虑获得客户机系统信息并将这些嵌到首页index.jsp中作为连接请求的参数。

在设置了上述参数后可以通过Visualgc 来观察垃圾回收的一些参数状态,再做相应的调整来改善性能。一般的标准是减少fullgc的次数,最好硬件支持使用并行垃圾回收(要求多CPU)。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/564853.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-07-02
下一篇2023-07-02

发表评论

登录后才能评论

评论列表(0条)

    保存