定制服务器都是怎么设计出来的啊?

定制服务器都是怎么设计出来的啊?,第1张

一般来说,定制服务器主要是在于以下四点的设计:

1、共享组件

出于资源利用及节能需求,服务器在定制化过程中通常可以采用共享组件的方式提升空间资源的利用率,从而降低能耗,类似的做法包括将多个服务器节点置于同一机箱空间内、多个服务器共享风扇及电源组件等。例如在4U空间内集成8 台1U服务器或4 台2U服务器,并实现电源及风扇的共享使用,较传统机架服务器部署密度提升,能耗降低,同时建造成本也下降了。

2、整合接口

为了进一步提升服务器内部线路及空间资源的利用率,服务器定制化过程中可以将一些常用的接口,如对USB、VGA等进行集成整合,形成统一的标准化接口。

3、按需配置部件

不同数据中心面向的用户群体不同,这导致其承担的业务负载有所差异。比如说互联网数据中心的业务一般单一且规模较大,因此服务器可以按照单一应用来深度定制。而对于大部分运营商来说,其数据中心面临的业务则较为分散,长词需要同时处理人工智能、Web、视频等多种类型的应用服务,在这种情况下,数据中心需要面向不同应用部署相应的定制化服务器。

在服务器定制化过程中,数据中心可以根据业务对资源的需求及服务级别协议的要求对服务器CPU、内存、IO、网卡及硬盘等部件进行针对性的配置,适当减少利用率较低的硬件资源,增加业务负载需求量较大的资源,从而防止资源的过度配置,同时避免了某些资源配置不足造成资源瓶颈。

4、按需定制软硬件

在外部政策及企业内部控制制度制约下,数据中心会产生某些特定的运维管理需求,这类需求实际上形成了对服务器原有功能的拓展,部分拓展功能的实现需要定制化的软件及硬件支持。例如,不少数据中心用户希望实现对服务器的远程管理,以此进一步降低数据中心运营管理成本、提升运营效率,并且在恶劣天气、当下疫情等不良的外部环境下,服务器远程管理功能能够降低运维人员外出工作的安全风险。为了满足这种特定的功能需求,定制化服务器可以实现智能平台管理接口开放,部署相应的远程管理工具,同时根据软件功能需求对底层硬件进行定制,如基板管理控制器BMC的定制等。

参考链接:定制服务器有哪些关键技术?

惠普推动绿色刀片策略造绿色数据中心

随着国家政策对节能降耗要求的提高,节能降耗正成为国家、全社会关注的重点。而IT能耗在所有的电力使用当中所占比重的不断上升,已经使其成为社会提倡节能降耗主要领域之一。做为全球领先的IT公司和一家具有强烈社会责任感的企业,惠普公司积极倡导“绿色IT”的理念,并加大研发,推出了一系列的针对绿色IT的创新技术和产品。10月26日,惠普公司在香山饭店举办了“绿色刀片”的研讨会,介绍了惠普公司新一代数据中心以及新一代刀片系统BladeSystem c-Class在供电散热等方面的绿色创新技术以及环保节能优势,并推出了针对绿色数据中心的完整解决方案。

长期以来,更强大的数据中心处理能力一直是我们追求的目标。但在能源开销与日俱增的今天,处理能力发展的另一面是需要消耗更多的资源。而且随着服务器密度的不断增大,供电需求也在相应增加,并由此产生了更多的热量。在过去的十年中,服务器供电密度平均增长了十倍。据IDC预测,到2008年IT采购成本将与能源成本持平。另一方面,数据中心的能耗中,冷却又占了能耗的60%到70%。因此,随着能源价格的节节攀升,数据中心的供电和冷却问题,已经成为所有的数据中心都无法回避的问题。

惠普公司十几年来一直致力于节能降耗技术的研究,并致力于三个层面的创新:一是数据中心层面环境级的节能技术;二是针对服务器、存储等IT产品在系统层面的绿色设计;三是对关键节能部件的研发,如供电、制冷、风扇等方面的技术创新。目前,来自惠普实验室的这些创新技术正在引领业界的绿色趋势。针对数据中心环境层面,惠普推出了全新的动态智能冷却系统帮助客户构建新一代绿色数据中心或对原有数据中心进行改造;在设备层面,惠普的新一代绿色刀片服务器系统以能量智控(Thermal Logic)技术以及PARSEC体系架构等方面的创新成为未来数据中心节能的最关键基础设施;同时这些创新技术体现在一些关键节能部件上,如Active Cool(主动散热)风扇、动态功率调整技术(DPS, Dynamic Power Saver)等。惠普公司的绿色创新将帮助客户通过提高能源效率来降低运营成本。

HP DSC精确制冷 实现绿色数据中心

传统数据中心机房采用的是平均制冷设计模式,但目前随着机架式服务器以及刀片服务器的出现和普及,数据中心出现了高密度服务器与低密度混合的模式,由于服务器的密度不均衡,因而产生的热量也不均衡,传统数据中心的平均制冷方法已经很难满足需求。造成目前数据中心的两个现状:一是目前85%以上的机房存在过度制冷问题;二在数据中心的供电中,只有1/3用在IT设备上,而制冷费用占到总供电的2/3 。因此降低制冷能耗是数据中心节能的关键所在。

针对传统数据中心机房的平均制冷弊端,惠普推出了基于动态智能制冷技术的全新解决方案——“惠普动态智能冷却系统”(DSC, Dynamic Smart Cooling)。动态智能冷却技术的目标是通过精确制冷,提高制冷效率。DSC可根据服务器运行负荷动态调控冷却系统来降低能耗,根据数据中心的大小不同,节能可达到20 %至45%。

DSC结合了惠普在电源与冷却方面的现有创新技术,如惠普刀片服务器系统 c-Class架构的重要组件HP Thermal Logic等技术,通过在服务器机架上安装了很多与数据中心相连的热能探测器,可以随时把服务器的温度变化信息传递到中央监控系统。当探测器传递一个服务器温度升高的信息时,中央监控系统就会发出指令给最近的几台冷却设备,加大功率制冷来降低那台服务器的温度。当服务器的温度下降后,中央监控系统会根据探测器传递过来的新信息,发出指令给附近的冷却设备减小功率。惠普的实验数据显示,在惠普实验室的同一数据中心不采用DSC技术,冷却需要117千瓦,而采用DSC系统只需要72千瓦。

惠普刀片系统:绿色数据中心的关键生产线

如果把数据中心看作是一个“IT工厂”,那么“IT工厂”节能降耗不仅要通过DSC等技术实现“工厂级”环境方面的节能,最重要的是其中每一条“生产线”的节能降耗,而数据中心的生产线就是服务器、存储等IT设备。目前刀片系统以节约空间、便于集中管理、易于扩展和提供不间断的服务,满足了新一代数据中心对服务器的新要求,正成为未来数据中心的重要“生产线”。因此刀片系统本身的节能环保技术是未来数据中心节能降耗的关键所在。

惠普公司新一代绿色刀片系统HP BladeSystem c-Class基于工业标准的模块化设计,它不仅仅集成了刀片服务器和刀片存储,还集成了数据中心的众多要素如网络、电源/冷却和管理等,即把计算、存储、网络、电源/冷却和管理都整合到一起。同时在创新的BladeSystem c-Class刀片系统中,还充分考虑了现代数据中心基础设施对电源、冷却、连接、冗余、安全、计算以及存储等方面的需求。

在标准化的硬件平台基础上,惠普刀片系统的三大关键技术,更令竞争对手望尘莫及。首先是惠普洞察管理技术——它通过单一的控制台实现了物理和虚拟服务器、存储、网络、电源以及冷却系统的统一和自动化管理,使管理效率提升了10倍,管理员设备配比达到了1:200。第二是能量智控技术——通过有效调节电力和冷却减少能量消耗,超强冷却风扇相对传统风扇降低了服务器空气流40%,能量消耗减少50%。最后是虚拟连接架构——大大减少了线缆数量,无需额外的交换接口管理。允许服务器额外增加、可替代、可移动,并无需管理员参与SAN和LAN的更改。

目前,惠普拥有完整的刀片服务器战略和产品线,既有支持2路或4路的ProLiant刀片服务器,也有采用安腾芯片的Integrity刀片系统,同时还有存储刀片、备份刀片等。同时,惠普BladeSystem c-Class刀片服务器系统已得到客户的广泛认可。根据IDC发布的2006年第四季度报告显示,惠普在刀片服务器的工厂营业额和出货量方面都占据了全球第一的位置。2007年第二季度,惠普刀片市场份额47.2%,领先竞争对手达15%,而且差距将会继续扩大。作为刀片市场的领导者,惠普BladeSystem c-Class刀片系统将成为数据中心的关键基础设施。

PARSEC体系架构和能量智控:绿色生产线的两大核心战略

作为数据中心的关键基础设施,绿色是刀片系统的重要发展趋势之一,也是数据中心节能的关键所在。HP BladeSystem c-Class刀片系统的创新设计中,绿色就是其关键创新技术之一,其独特的PARSEC体系架构和能量智控技术就是这条绿色生产线的两大关键技术。

HP PARSEC体系结构是惠普刀片系统针对绿色策略的另一创新。目前机架服务器都采用内部几个小型局部风扇布局,这样会造成成本较高、功率较大、散热能力差、消费功率和空间。HP PARSEC(Parallel Redundant Scalable Enterprise Cooling)体系结构是一种结合了局部与中心冷却特点的混合模式。机箱被分成四个区域,每个区域分别装有风扇,为该区域的刀片服务器提供直接的冷却服务,并为所有其它部件提供冷却服务。由于服务器刀片与存储刀片冷却标准不同,而冷却标准与机箱内部的基础元件相适应,甚至有时在多重冷却区内会出现不同类型的刀片。配合惠普创新的 Active Cool风扇,用户就可以轻松获得不同的冷却配置。惠普风扇设计支持热插拔,可通过添加或移除来调节气流,使之有效地通过整个系统,让冷却变得更加行之有效。

惠普的能量智控技术(Thermal Logic)是一种结合了惠普在供电、散热等方面的创新技术的系统级节能方法,该技术提供了嵌入式温度测量与控制能力,通过即时热量监控,可追踪每个机架中机箱的散热量、内外温度以及服务器耗电情况,这使用户能够及时了解并匹配系统运行需求,与此同时以手动或自动的方式设定温度阈值。或者自动开启冷却或调整冷却水平以应对并解决产生的热量,由此实现最为精确的供电及冷却控制能力。通过能量智控管理,客户可以动态地应用散热控制来优化性能、功耗和散热性能,以充分利用电源预算,确保灵活性。采用能量智控技术,同样电力可以供应的服务器数量增加一倍,与传统的机架堆叠式设备相比,效率提升30%。在每个机架插入更多服务器的同时,所耗费的供电及冷却量却保持不变或是减小,整体设计所需部件也将减少。

Active Cool风扇、DPS、电源调整仪:生产线的每个部件都要节能

惠普BladeSystem c-Class刀片系统作为一个“绿色生产线”,通过能量智控技术和PARSEC体系架构实现了“生产线”级的节能降耗,而这条生产线上各组成部件的技术创新则是绿色生产线的关键技术保障。例如,深具革新意义的Active Cool风扇,实现智能电源管理的ProLiant 电源调整仪以及动态功率调整等技术。

风扇是散热的关键部件。风扇设计是否越大越好?答案是否定的。市场上有的刀片服务器产品采用了较大型的集中散热风扇,不仅占用空间大、噪音大,冗余性较差、有漏气通道,而且存在过渡供应、需要较高的供电负荷。

惠普刀片服务器中采用了创新的Active Cool(主动散热)风扇。Active Cool风扇的设计理念源于飞行器技术,体积小巧,扇叶转速达136英里/小时,在产生强劲气流的同时比传统型风扇设计耗电量更低。同时具有高风量(CFM)、高风压、最佳噪音效果、最佳功耗等特点,仅使用100瓦电力便能够冷却16台刀片服务器。这项深具革新意义的风扇当前正在申请20项专利。Active Cool风扇配合PARSEC散热技术,可根据服务器的负载自动调节风扇的工作状态,并让最节能的气流和最有效的散热通道来冷却需要的部件,有效减少了冷却能量消耗,与传统散热风扇相比,功耗降低66%,数据中心能量消耗减少50%。

在供电方面,同传统的机架服务器独立供电的方式相比,惠普的刀片系统采用集中供电,通过创新的ProLiant 电源调整仪以及动态功率调整等技术实现了智能电源管理,根据电源状况有针对性地采取策略,大大节省了电能消耗。

ProLiant 电源调整仪(ProLiant Power Regulator)可实现服务器级、基于策略的电源管理。电源调整议可以根据CPU的应用情况为其提供电源,必要时,为CPU应用提供全功率,当不需要时则可使CPU处于节电模式,这使得服务器可以实现基于策略的电源管理。事实上可通过动态和静态两种方式来控制CPU的电源状态,即电源调整议即可以设置成连续低功耗的静态工作模式,也可以设置成根据CPU使用情况自动调整电源供应的动态模式。目前电源调整议可适用于AMD或英特尔的芯片,为方便使用,惠普可通过iLO高级接口显示处理器的使用数据并通过该窗口进行配置操作。电源调整议使服务器在不损失性能的前提下节省了功率和散热成本。

惠普创新的动态功率调整技术(DPS, Dynamic Power Saver)可以实时监测机箱内的电源消耗,并根据需求自动调节电源的供应。由于电源在高负荷下运转才能发挥最大效力,通过提供与用户整体基础设施要求相匹的配电量, DPS进一步改进了耗电状况。例如,当服务器对电源的需求较少时,可以只启动一对供电模块,而使其它供电模块处于stand by状态,而不是开启所有的供电单元,但每个供电单元都以较低的效率运行。当对电源需求增加时,可及时启动STAND BY的供电模块,使之满足供电需求。这样确保了供电系统总是保持最高效的工作状态,同时确保充足的电力供应,但通过较低的供电负荷实现电力的节约。通过动态功率调整技术,每年20个功率为0.075/千瓦时的机箱约节省5545美元。

结束语

传统数据中心与日俱增的能源开销备受关注,在过去十年中服务器供电费用翻番的同时,冷却系统也为数据中心的基础设施建设带来了空前的压力。为了解决节节攀升的热量与能源消耗的难题,惠普公司创新性地推出了新一代绿色刀片系统BladeSystem c-Class和基于动态智能制冷技术DSC的绿色数据中心解决方案,通过惠普创新的PARSEC体系架构、能量智控技术(Thermal Logic)以及Active Cool风扇等在供电及散热等部件方面的创新技术来降低能耗,根据数据中心的大小不同,这些技术可为数据中心节能达到20 %至45%。

CPU的流水线1.主频主频也叫时钟频率,单位是MHz,用来表示CPU的运算速度。CPU的主频=外频×倍频系数。很多人认为主频就决定着CPU的运行速度,这不仅是个片面的,而且对于服务器来讲,这个认识也出现了偏差。至今,没有一条确定的公式能够实现主频和实际的运算速度两者之间的数值关系,即使是两大处理器厂家Intel和AMD,在这点上也存在着很大的争议,我们从Intel的产品的发展趋势,可以看出Intel很注重加强自身主频的发展。像其他的处理器厂家,有人曾经拿过一快1G的全美达来做比较,它的运行效率相当于2G的Intel处理器。所以,CPU的主频与CPU实际的运算能力是没有直接关系的,主频表示在CPU内数字脉冲信号震荡的速度。在Intel的处理器产品中,我们也可以看到这样的例子:1 GHz Itanium芯片能够表现得差不多跟2.66 GHz Xeon/Opteron一样快,或是1.5 GHz Itanium 2大约跟4 GHz Xeon/Opteron一样快。CPU的运算速度还要看CPU的流水线的各方面的性能指标。当然,主频和实际的运算速度是有关的,只能说主频仅仅是CPU性能表现的一个方面,而不代表CPU的整体性能。3.前端总线(FSB)频率前端总线(FSB)频率(即总线频率)是直接影响CPU与内存直接数据交换速度。有一条公式可以计算,即数据带宽=(总线频率×数据带宽)/8,数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率。比方,现在的支持64位的至强Nocona,前端总线是800MHz,按照公式,它的数据传输最大带宽是6.4GB/秒。6.缓存缓存大小也是CPU的重要指标之一,而且缓存的结构和大小对CPU速度的影响非常大,CPU内缓存的运行频率极高,一般是和处理器同频运作,工作效率远远大于系统内存和硬盘。实际工作时,CPU往往需要重复读取同样的数据块,而缓存容量的增大,可以大幅度提升CPU内部读取数据的命中率,而不用再到内存或者硬盘上寻找,以此提高系统性能。但是由于CPU芯片面积和成本的因素来考虑,缓存都很小。11.超流水线与超标量在解释超流水线与超标量前,先了解流水线(pipeline)。流水线是Intel首次在486芯片中开始使用的。流水线的工作方式就象工业生产上的装配流水线。在CPU中由5—6个不同功能的电路单元组成一条指令处理流水线,然后将一条X86指令分成5—6步后再由这些电路单元分别执行,这样就能实现在一个CPU时钟周期完成一条指令,因此提高CPU的运算速度。经典奔腾每条整数流水线都分为四级流水,即指令预取、译码、执行、写回结果,浮点流水又分为八级流水。超标量是通过内置多条流水线来同时执行多个处理器,其实质是以空间换取时间。而超流水线是通过细化流水、提高主频,使得在一个机器周期内完成一个甚至多个操作,其实质是以时间换取空间。例如Pentium 4的流水线就长达20级。将流水线设计的步(级)越长,其完成一条指令的速度越快,因此才能适应工作主频更高的CPU。但是流水线过长也带来了一定副作用,很可能会出现主频较高的CPU实际运算速度较低的现象,Intel的奔腾4就出现了这种情况,虽然它的主频可以高达1.4G以上,但其运算性能却远远比不上AMD 1.2G的速龙甚至奔腾III。12.封装形式CPU封装是采用特定的材料将CPU芯片或CPU模块固化在其中以防损坏的保护措施,一般必须在封装后CPU才能交付用户使用。CPU的封装方式取决于CPU安装形式和器件集成设计,从大的分类来看通常采用Socket插座进行安装的CPU使用PGA(栅格阵列)方式封装,而采用Slot x槽安装的CPU则全部采用SEC(单边接插盒)的形式封装。现在还有PLGA(Plastic Land Grid Array)、OLGA(Organic Land Grid Array)等封装技术。由于市场竞争日益激烈,目前CPU封装技术的发展方向以节约成本为主。好了,上面贴的一些都是和CPU的运行效率直接相关的参数,剩下的参数,有的太简单,有的我们不常接触到.没有贴,好,看一下流水线的来由,大家都知道,两个CPU会比一个CPU快,但是为什么呢,也不会出现,一个CPU,运行WORD,一个CPU,运行CS呀, 那是因为,把指令细分成线程后,他们可以分别运行,cyrix的MII,当时不是有个技术么,乱序运行!!就是提高运行效率的一个手段,流水线,也是这种目的,P4,的时候,就20级流水线了,就是说,CPU运行一次的时候,等于,20个CPU(没有流水线),同时运行一样,这本来是什么呢,运行速度一下子,提高了20倍但是,事实上并不是这样,为什么呢,这20个东东运行完了,得把他们再拼一起呀,还有一件事,如果拼错了,(下面的工人装不上,就认为是原料有问题)他就认为,这次的运行结果是错的,说,"重来"吧. 那么,有一个CPU,只有10级流水线,但是由于他们的管理很好,每次运行都不返工,所以,他们的生产效率反而更高!!!AMD,和INTEL,现在正是这种情况,一个抓管理,管理上去了,下面的工人出错的才少,(返工次数少)一个抓技术,工人熟练了,生产的东西,质量才高!!(每次出来的东西多)当然,又抓管理,又抓技术,两手都要抓,两手都要硬,这是中国人的想法,都抓的人,显然什么都没抓好,都破产了,现在只有这两家还存活着,......现在我想给流水线一个公正一点的说法, 如果你的CPU组装的水平很差,那当然,流水线越多,你越乱,就像,你的水平不行, 管理了,10000多个程序员高手, 项目乱的一团糟, 但是,如果你是一个管理经验丰富的人, 下面的人一下也不会做活, 那么,项目也是一个失败, 幸好,事实上,并不是这样绝对,管理员也是差不多的水平, 程序员也是差不多的水平, 那么你建一个项目, 你选好的程序员,还是好的管理员!!!我说,不一定,我得看是什么项目, 如果项目是一般的项目, 一般的管理员就可以了,那么,我当然选好的程序员, 项目完成的又快又好, 一个程序,本身就可以乱序运行, 那么,INTEL的CPU当然就是最好了, 反正,大家都不会返工!!!!! 但是一个项目是很复杂的, 而代码量并不多, 那么,当然是选好的管理员, 如果一个程序,就是针对测试而测试的, 导致,CPU运算不断的返工, 那当然就是AMD的CPU好, 比如,大浮点数的运行,AMD,比INTEL的高50%现在看不到这种比较了, 但是,你可以查一查,以前的资料, 有PIII1G,与AMD速龙1G的比较, 这个差异到现在也没有改变, 这就是为什么AMD的CPU,显卡得分,会比INTEL的高, 3Dmark2001的得分,一般都比INTEL的高, 而,business stone,INTEL 一般都比AMD要高, SYSMARK,也是,INTEL 比AMD要高, 因为这些程序不复杂,(线程复杂,和我们想的程序本身复杂是两回事)买CPU也是一样, AMD,和INTEL谁好,????? 我也不知道,我喜欢AMD,但我目前确实使用的是INTEL, 家里的两台机子全是INTEL. 没有AMD,INTEL不会这么便宜, 没有AMD,中国的D版软件..... 中国的组装机.............但是,我要为流水线正一正名, 并不是流水线长了,运行效率就低了, 流水线长了,运行效率绝对是高了, 但是,运行出错的代价是大了,流水线,这本身是一个提高效率的技术, 怎么现在的人,都当成是,因为提高频率,所必须采用的手段呢????? 当时没有流水线的时候, 流水线一出来的时候, 大家都认为这是提高效率的秘密武器呀!!!越是实际的程序,越容易发生流水线返工,因此P4效能越差。倒是纯粹的理论测试,比如sandra,pcmark还有3dmark之类P4表现不错(老实说P4在3dmark里面的表现相对于在bussiness winstone里面算好的了),而到了实际测试,特别是bussiness winstone(直接调用office源代码)或者sciencemark(直接编译的标准量子化学代码)里面,p4的表现那叫一个菜。。。。连P4c都不是同PR的AthlonXP的对手。至于sysmark里面Intel的分高,那是一个著名的bug,因为sysmark认为AthlonXP不支持SSE,结果是AthlonXP用x87浮点对抗专门为SSE优化的多媒体代码,自然性能不成(即使这样Intel也没有多少优势)在bussiness winstone 2002的测试结果,看看就会发现,P4 3.2c的性能刚刚可以匹敌公认为虚标最严重的AthlonXp 3200+。 当然,多媒体性能上P4 3.2c还是毫无疑问的战胜AXP 3200+,毕竟,AXP不支持SSE2。即使没有流水线返工,长流水线的性能也就和短流水线相同,因为每条流水线每周期就只能执行一条指令(p4有个怪异的设计就是如果跑配对的两个简单微指令,那么两个可以并成一个执行,所以如果你反复执行完全相同的指令比如a=a+1一百亿次,那么P4比AthlonXP要快一倍),所以长流水在任何角度也不可能提升效率。长流水的唯一好处就是,电路比较简单,设计起来比较容易.解释的详细一点就是,并不是说20级流水线每次执行的动作比10级流水线多一倍,相反,他们能执行的实际功能是一样的,只是每级执行的操作简单了一些。比如,一个工厂造螺丝,可以分成两级流水,一个人造螺丝,一个人车螺纹。也可以分成100个步骤,第一个人负责拿铁块,第二个人负责递,第三个人负责往上画线。。。。第99个人车单数螺纹,第100个人负责擦掉粉尘。如果每个步骤耗费的时间都一样,那么两种做法速度完全一样,唯一的区别是,前面的办法工人素质必须很高,因为他每个人干了对方50个人的活。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/578878.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-07-05
下一篇2023-07-05

发表评论

登录后才能评论

评论列表(0条)

    保存