单个reqeust 对CPU消耗越高,外部系统接口、IO影响速度越慢,系统吞吐能力越低,反之越高。
QPS(TPS):每秒钟request/事务 数量
并发数: 系统同时处理的request/事务数
响应时间: 一般取平均响应时间
(很多人经常会把并发数和TPS理解混淆)
理解了上面三个要素的意义之后,就能推算出它们之间的关系:
QPS(TPS)= 并发数/平均响应时间
一个系统吞吐量通常由QPS(TPS)、并发数两个因素决定,每套系统这两个值都有一个相对极限值,在应用场景访问压力下,只要某一项达到系统最高值,系统的吞吐量就上不去了,如果压力继续增大,系统的吞吐量反而会下降,原因是系统超负荷工作,上下文切换、内存等等其它消耗导致系统性能下降。
决定系统响应时间要素
我们做项目要排计划,可以多人同时并发做多项任务,也可以一个人或者多个人串行工作,始终会有一条关键路径,这条路径就是项目的工期。
系统一次调用的响应时间跟项目计划一样,也有一条关键路径,这个关键路径是就是系统影响时间;
关键路径是有CPU运算、IO、外部系统响应等等组成。
各模块细节1.Native App(移动端的app):
1).跟随主服务常驻内存,在收到当前网络环境为Wifi事件后,启动HttpServer。
(当前网络切换成3G/2G等网络时关闭HttpServer)。
以上这步我们叫做注册:启动移动端的HttpServer的时候,我们会将移动设备的ip地址(内网地址)发送到指定的后台Server上
2).收到从Web来的http请求后,往Server发送绑定请求,这时候就将移动端的IMEI和HTML中的Cookie一起上传到指定的Server上
例如:
http://serverhost/?cookie=123213&imei=31233213123
以上这步我们叫做一次绑定的完成操作
以为我们是在移动端开始一个HttpServer的,所以要考虑一些额外的因素,比如耗电量
风险控制:使用灰度测试规则,并使用开关限制功能。
功耗风险:经过三台设备测试,电量消耗忽略不计(具体CPU使用时间在统计)。
2.Web JS:
1).加载页面加载后先从CDN加载一个静态的JS到此页面。
2).静态JS再请求Server 获取一段动态JS用以做本地Ping。
(如果此IP已有N次获取,则考虑>N的节点是一个大型公共网络,则把此公共IP加入黑名单,不再返回动态JS)
3).获得动态JS后直接Ping本地的HttpServer。
(Ping的IP/Port会随着动态JS一起下发)
这里我们是在Html页面中使用JS脚本来处理传递Cookie给移动端的功能。
3.Bridge Server:
1).Sever选型:Node.js
同时考虑到开发效率,性能,和client的JS的契合度。
Node.js单台16核服务器,4节点,QPS经测试能到6k-8k。
较适合短频非阻塞的请求。
2).数据存储:Redis
考虑到NativeApp的外网IP时效性,以及对于短频请求的快速应答。
以外网IP为Key,各个IP为Value。每天清理一次外网IP。
存储格式:{外网IP:{NativeApp IP/Port, .........}}
3).移动端所需要的接口
接口一:Native App 对于本外网IP的注册的请求。
接口二:Navtive App的绑定请求。
具体原理图:
上面讲解了一下技术的实现方案,下面我们就来看一下,具体的实现技术
首先来看移动端的,我们需要建立一个HttpServer
我们可能知道在PC端建立一个Server很简单,直接使用Tomcat服务器就可以了,但是我们移动端不可能去搭建一个服务器的,那么我们该怎么办呢?我们可以在网上搜索一下关于如何在手机中搭建一个WebServce,我们可以看到Apache已经帮我们做好了这件事了,他提供了一个jar,有相应的api,同时还有一种技术就是老外有个人写好了一个类:NanoHttpd,我们只需要看懂这个类,然后自己在编写一个类,继承这个类即可,因为这个类是抽象的。这两种搭建的Server原理都是很简单的,就是建立一个Socket连接,这个和Tomcat是一样的,只是他们将这种操作进行优化处理了
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)