Intel 4040
Intel 8086
Intel 8088
80186
80286
80386
80486
奔腾(Pentium)
Pentium Pro
Pentium II
赛扬(Celeron)
奔腾III(Pentium III)
奔腾4 (Pentium 4)
奔腾4极致版(Pentium 4 Extreme Edition)
赛扬D(Celeron D)
奔腾D(Pentium D)
酷睿 双核 Intel Core Duo
酷睿2 双核 Intel Core 2 Duo
奔腾双核 pentium dual core
酷睿2 至尊版 Intel Core 2 Extreme
酷睿2 四核 Intel Core 2 Quad
赛扬双核 Intel Celeron Duo
笔记型电脑用CPU
Pentium III Mobile
Pentium 4 Mobile 区别于机动版Pentium 4
奔腾M(Pentium M)
赛扬M(Celeron M)
酷睿 双核 (Intel Core Duo)
酷睿2 双核 (Intel Core 2 Duo)
酷睿 单核(Intel Core Solo)
奔腾双核 pentium dual core
凌动超低功耗处理器(Atom)
赛扬双核 Intel Celeron Duo
服务器用CPU
奔腾II至强(Pentium II Xeon)
奔腾III至强(Pentium III Xeon)
至强(Xeon)
安腾(Itanium)
安腾2(Itanium 2)
安腾3(Itanium 3)
微处理器的里程碑1971年:4004微处理器
4004处理器是英特尔的第一款微处理器。这一突破性的重大发明不仅成为Busicom计算器强劲的动力之源,更打开了让机器设备象个人电脑一样可嵌入智能的未来之路。
1972年:8008微处理器
8008处理器拥有相当于4004处理器两倍的处理能力。《无线电电子学》 杂志1974年的一篇文章曾提及一种采用了8008处理器的设备 Mark-8,它是首批为家用目的而制造的电脑之一——不过按照今天的标准,Mark-8既难于制造组装,又不容易维护操作。
1974年:8080微处理器
世界上第一台个人电脑 Altair 采用了8080处理器作为大脑——据称 “Altair” 出自电视剧 《星际迷航 Star Trek》,是片中企业号飞船的目标地之一。电脑爱好者们花395美元就能购买一台 Altair。仅短短几个月时间,这种电脑就销售出了好几万台,创下历史上首次个人电脑延期交货的纪录
1978年:8086-8088微处理器
英特尔与IBM 新个人电脑部门所进行的一次关键交易使8088处理器成为了IBM 新型主打产品IBM PC的大脑。8088的大获成功使英特尔步入全球企业500强的行列,并被 《财富》 杂志评为“70 年代最成功企业”之一。
1982年:286微处理器
英特尔286最初的名称为80286,是英特尔第一款能够运行所有为其前代产品编写的软件的处理器。这种强大的软件兼容性亦成为英特尔微处理器家族的重要特点之一。在该产品发布后的6年里,全世界共生产了大约1500万台采用286处理器的个人电脑。
1985年:英特386? 微处理器
英特尔386? 微处理器拥有275,000个晶体管,是早期4004处理器的100多倍。该处理器是一款32位芯片,具有多任务处理能力,也就是说它可以同时运行多种程序。
1989年:英特尔486? DX CPU 微处理器
英特尔486? 处理器从真正意义上表明用户从依靠输入命令运行电脑的年代进入了只需点击即可操作的全新时代。史密森尼博物院国立美国历史博物馆的技术史学家David K. Allison回忆说,“我第一次拥有这样一台彩色显示电脑,并如此之快地在桌面进行我的排版工作。”英特尔486? 处理器首次增加了一个内置的数学协处理器,将复杂的数学功能从中央处理器中分离出来,从而大幅度提高了计算速度。
1993年:英特尔奔腾(Pentium)处理器
英特尔奔腾处理器能够让电脑更加轻松地整合 “真实世界” 中的数据(如讲话、声音、笔迹和图片)。通过漫画和电视脱口秀节目宣传的英特尔奔腾处理器,一经推出即迅速成为一个家喻户晓的知名品牌。
1995年:英特尔高能奔腾(Italium Pentium) 处理器
于1995 年秋季发布的英特尔高能奔腾处理器设计用于支持32位服务器和工作站应用,以及高速的电脑辅助设计、机械工程和科学计算等。每一枚英特尔高能奔腾处理器在封装时都加入了一枚可以再次提升速度的二级高速缓存存储芯片。强大的英特尔高能奔腾处理器拥有多达550万个晶体管。不适应市场需要,过早夭折。
1997年:英特尔奔腾II(Pentium II)处理器
英特尔奔腾II 处理器拥有750万个晶体管,并采用了英特尔MMX? 技术,专门设计用于高效处理视频、音频和图形数据。该产品采用了创新的单边接触卡盒(S.E.C)封装,并整合了一枚高速缓存存储芯片。有了这一芯片,个人电脑用户就可以通过互联网捕捉、编辑并与朋友和家人共享数字图片;还可以对家庭电影进行编辑和添加文本、音乐或情景过渡;甚至可以使用视频电话通过标准的电话线向互联网发送视频。
1998年:英特尔奔腾II至强(Xeon)处理器
英特尔奔腾II至强处理器设计用于满足中高端服务器和工作站的性能要求。遵照英特尔为特定市场提供专属处理器产品的战略,英特尔奔腾II至强处理器所拥有的技术创新专门设计用于工作站和服务器执行所需的商业应用,如互联网服务、企业数据存储、数字内容创作以及电子和机械设计自动化等。基于该处理器的计算机系统可配置四或八枚处理器甚至更多。
1999年:英特尔赛扬(Celeron)处理器
作为英特尔面向具体市场开发产品这一战略的继续,英特尔赛扬处理器设计用于经济型的个人电脑市场。该处理器为消费者提供了格外出色的性价比,并为游戏和教育软件等应用提供了出色的性能。
1999年:英特尔奔腾III(Pentium III)处理器
英特尔奔腾III处理器的70条创新指令——因特网数据流单指令序列扩展(Internet Streaming SIMD extensions)——明显增强了处理高级图像、3D、音频流、视频和语音识别等应用所需的性能。该产品设计用于大幅提升互联网体验,让用户得以浏览逼真的网上博物馆和商店,并下载高品质的视频等。该处理器集成了950万个晶体管,并采用了0.25微米技术。
1999年:英特尔奔腾III至强(Pentium III Xeon)处理器
英特尔奔腾III至强处理器在英特尔面向工作站和服务器市场的产品基础上进行了扩展,提供额外的性能以支持电子商务应用及高端商业计算。该处理器整合了英特尔奔腾III 处理器所拥有的70条 SIMD 指令,使得多媒体和视频流应用的性能显著增强。并且英特尔奔腾III至强处理器所拥有的先进的高速缓存技术加速了信息从系统总线到处理器的传输,使性能获得了大幅提升。该处理器设计用于多处理器配置的系统。
2000年:英特尔奔腾4(Pentium 4)处理器
基于英特尔奔腾4处理器的个人电脑用户可以创作专业品质的电影;通过互联网发送像电视一样的视频;使用实时视频语音工具进行交流;实时渲染3D图形;为 MP3 播放器快速编码音乐;在与互联网进行连接的状态下同时运行多个多媒体应用。该处理器最初推出时就拥有4200万个晶体管和仅为0.18微米的电路线。 英特尔首款微处理器4004的运行速率为108KHz,而现今的英特尔奔腾4处理器的初速率已经达到了1.5GHz,如果汽车的速度也能有同等提升的话,那么从旧金山开车到纽约只需要13秒。
2001年:英特尔至强(Xeon)处理器
英特尔至强处理器的应用目标是那些即将出现的高性能和中端双路工作站、以及双路和多路配置的服务器。该平台为客户提供了一种兼具高性能和低价格优势的全新操作系统和应用选择。与基于英特尔 奔腾III至强处理器的系统相比,采用英特尔至强处理器的工作站根据应用和配置的不同,其性能预计可提升30%到90%左右。该处理器基于英特尔NetBurst? 架构,设计用于为视频和音频应用、高级互联网技术及复杂3D图形提供所需要的计算动力。
2001年:英特尔安腾(Itanium)处理器
英特尔安腾处理器是英特尔推出的64位处理器家族中的首款产品。该处理器是在基于英特尔简明并行指令计算(EPIC)设计技术的全新架构之基础上开发制造的,设计用于高端、企业级服务器和工作站。该处理器能够为要求最苛刻的企业和高性能计算应用(包括电子商务安全交易、大型数据库、计算机辅助的机械工程以及精密的科学和工程计算)提供全球最出色的性能。
2002年:英特尔安腾2处理器(Itanium2) Intel Pentium 4 /Hyper Threading处理器
英特尔安腾2处理器是安腾处理器家族的第二位成员,同样是一款企业用处理器。该处理器家族为数据密集程度最高、业务最关键和技术要求最高的计算应用提供英特尔 架构的出色性能及规模经济等优势。该处理器能为数据库、计算机辅助工程、网上交易安全等提供领先的性能。
英特尔推出新款Intel Pentium 4处理器内含创新的Hyper-Threading(HT)超执行绪技术。超执行绪技术打造出新等级的高效能桌上型计算机,能同时快速执行多项运算应用, 或针对支持多重执行绪的软件带来更高的效能。超执行绪技术让计算机效能增加25%。除了为桌上型计算机使用者提供超执行绪技术外,英特尔亦达成另一项计算 机里程碑,就是推出运作时脉达3.06GHz的Pentium 4处理器,是首款每秒执行30亿个运算周期的商业微处理器,如此优异的性能要归功于当时业界最先进的0.13微米制程技术,翌年,内建超执行绪技术的 Intel Pentium4处理器时脉达到3.2GHz。
2003年:英特尔 奔腾 M(Pentium M) /赛扬 M (Celeron M)处理器
英特尔奔腾M处理器,英特尔855芯片组家族以及英特尔PRO/无线2100网卡是英特尔迅驰? 移动计算技术的三大组成部分。英特尔迅驰移动计算技术专门设计用于便携式计算,具有内建的无线局域网能力和突破性的创新移动性能。该处理器支持更耐久的电池使用时间,以及更轻更薄的笔记本电脑造形。
2005年:Intel Pentium D 处理器
首颗内含2个处理核心的Intel Pentium D处理器登场,正式揭开x86处理器多核心时代。(绰号胶水双核,被别人这样叫是有原因的,PD由于高频低能噪音大,所以才有这个称号)
2005年:Intel Core处理器
这是英特尔向酷睿架构迈进的第一步。但是,酷睿处理器并没有采用酷睿架构,而是介于NetBurst和Core之间(第一个基于Core架构的处理器是酷睿2)。最初酷睿处理器是面向移动平台的,它是英特尔迅驰3的一个模块,但是后来苹果转向英特尔平台后推出的台式机就是采用的酷睿处理器。
酷睿使双核技术在移动平台上第一次得到实现。与后来的酷睿2类似,酷睿仍然有数个版本:Duo双核版,Solo单核版。其中还有数个低电压版型号以满足对节电要求苛刻的用户的要求。
2006年:Intel Core 2 (酷睿2,俗称“扣肉”)/ 赛扬 Duo 处理器
Core微架构桌面/移动处理器:桌面处理器核心代号Conroe。将命名为Core 2 Duo/Extreme家族,其E6700 2.6GHz型号比先前推出之最强的Intel Pentium D 960(3.6GHz)处理器,在效能方面提升了40%,省电效率亦增加40%,Core 2 Duo处理器内含2.91亿个晶体管。移动处理器核心代号Merom。是迅驰3.5和迅驰4的处理器模块。当然这两种酷睿2有区别,最主要的就是将FSB由667MHz/533MHz提升到了800MHz。
2007年:Intel 四核心服务器用处理器
英特尔已经推出了若干四核台式机芯片,作为其双核Quad和Extreme家族的组成部分。在服务器领域,英特尔将在其低电压3500和7300系列中交付使用不少于具有9个四核处理器的Xeons。
2007年:Intel QX9770四核至强45nm处理器
先进制程带来的节能冷静,HI-K的引进使CPU更加稳定。先进的SSE4.1指令集、快速除法器,卓越的执行效率,INTEL在处理器方面不断领先
2008年:Intel Atom凌动处理器
低至0.6W的超低功耗处理器,带给大家的是难以想象的节能与冷静
CPU(中央处理器)是一块超大规模的集成电路,是一台计算机的运算核心和控制核心。它的功能主要是解释计算机指令以及处理计算机软件中的数据。计算机的性能在很大程度上由CPU的性能决定,而CPU的性能主要体现在其运行程序的速度上。影响运行速度的性能指标包括CPU的工作频率、Cache容量、指令系统和逻辑结构等参数。
姓名:吕红霞;学号:20011210203;学院:通信工程学院 转自https://mp.weixin.qq.com/s/rULXlihPLhZCjnGhbMbCMg【嵌牛导读】 本文讲解了多核心CPU和SoC芯片及其工作原理【嵌牛鼻子】 多核CPU,进程,线程【嵌牛提问】 现在的CPU或SoC基本都是在单芯片中集成多个CPU核心,形成通常所说的4核、8核或更多核的CPU或SoC芯片。为什么要采用这种方式?多个CPU 核心在一起是如何工作的?CPU核心越多就一定越好吗?【嵌牛正文】要说明什么是多核心CPU或SoC芯片,首先要从CPU核心(Core)说起。我们知道,CPU是中央处理器(Central Processing Unit)的英文简称,它具有控制和信息处理的能力,是电脑和智能设备的控制中枢。如果把传统CPU芯片中的封装和辅助电路(例如引脚的接口电路、电源电路和时钟电路等)排除在外,只保留完成控制和信息处理功能的核心电路,这部分电路就是 CPU核心 ,也简称CPU核。一个CPU核心基本上是一个完全独立的处理器,它可以从内部存储器中读取指令,并执行指令指定的控制和计算任务。 如果把 一个 CPU核心和相关辅助电路封装在一个芯片中,这个芯片就是传统的 单核心CPU芯片 ,简称单核CPU。如果把 多个 CPU核心和相关辅助电路封装在一个芯片中,这个芯片就是 多核心CPU芯片 ,简称多核CPU。当然,多核心CPU芯片会包含更多的辅助电路,以解决多个CPU核心之间的通信和协调问题。 如果在多核心CPU芯片中再集成一些其它功能部件和接口电路,就形成了完整的系统,那么这个芯片就变成了 多核心SoC芯片 了,简称多核SoC。在不严格区分的情况下,SoC也可以称为CPU。发展多核心CPU的初心源于“人多力量大”的简单道理。从这个意义上来看,当初芯片集成度不高的时候,Inteli8086 CPU和i8087协处理器应该算是多核心CPU的雏形,是 多芯片协作形成了一个处理核心 ,需要采取许多技术来解决CPU和协处理器之间的合作、协作问题。 今天芯片的集成度很高,单芯片中集成几个甚至几十个CPU核心已不在话下,但还是不能满足超级计算的需要,需要在超级计算机中使用成千上万块高性能CPU芯片一起合作、协作,这可以看作 芯片内 多核心、 芯片外 多芯片的多核心CPU集群。 CPU芯片从外观上看是一块芯片,但打开封装来看,内部可能只有一块裸片(die),也可能是多块裸片封装在一起,称为 多芯片模组 (Multichip Module,简称 MCM ),如图2b所示。但从软件角度来看,封装形式无关紧要,无论是芯片内还是芯片外,CPU核心多少才是最重要的,它们决定着系统的并行运算和处理能力,它们的主频频率和核心之间通信方式决定了系统的处理速度。 另外,今天的桌面计算机CPU、手机SoC中还集成了许多图形处理器(GPU)核心、人工智能处理器(APU)核心等,这些是否也应该算作多核心CPU和SoC中的“核心”呢?我觉得从广义角度上应该算吧。 因此,要回顾多核心CPU的发展,大致可以分为 1 .雏形期; 2 . 单芯片单核心; 3 .单芯片多核心; 4 .单核心多芯片; 5 .多核心多芯片几种情形。这些发展阶段不一定按照这个前后顺序,可能有交叉时期,也可能有前后颠倒的情形。第2和第3种情形一般是应用在桌面计算机、智能手机等移动终端上的CPU芯片,第4和第5种是应用在服务器和超级计算机上的CPU芯片。本文限于篇幅和主题集中的需要,主要探讨第3种 单芯片多核心 的情况,这种情况下的CPU是 单芯片多处理器 (Chip Multi Processors,简称 CMP )模式。1971 ~2004年,单核心CPU一路独行 。Intel公司1971年推出全球首款CPU芯片i4004,直到2004年推出超线程的Pentium 4 CPU系列,期间共33年时间。在这期间,CPU芯片很好地沿着摩尔定律预示的规律发展,沿着集成度不断翻倍、主频不断提升、晶体管数量快速增加的道路前进,这是一条单核心CPU不断迭代升级的发展之路。 但是,当晶体管数量大幅增加导致功耗急剧增长,CPU芯片发热让人难以接受,CPU芯片可靠性也受到很大影响的时候,单核心CPU发展似乎到了穷途末路。摩尔定律的提出者 戈登.摩尔 也依稀觉得“尺寸不断缩小”、“主频为王”这条路子即将走到尽头。2005年4月他曾公开表示,引领芯片行业接近40年的摩尔定律将在10~20年内失效。 其实,早在上世纪90年代末,就有许多业界人士呼吁用CMP技术实现的多核心CPU替代单线程单核心CPU。IBM、惠普、Sun等高端服务器厂商,更是相继推出了多核心服务器CPU。但是,由于服务器CPU芯片价格太高、应用面较窄,并未引起大众广泛关注。 2005年初AMD抢先推出了64位CPU芯片,并率先Intel发表声明保证其64位CPU的稳定性和兼容性,Intel才想起了利用“多核心”这一武器进行“帝国反击战”。2005年4月,Intel仓促推出简单封装的2核心Pentium D和Pentium4至尊版840。之后不久,AMD也发布了双核心皓龙(Opteron)和速龙(Athlon)CPU芯片[9]。2006 年被认为是多核心CPU的元年 。这年7月23日,Intel基于酷睿(Core)架构的CPU发布。11月,Intel又推出了面向服务器、工作站和高端PC机的至强(Xeon)5300和酷睿2双核心和4核心至尊版系列CPU。与上一代台式机CPU相比,酷睿2双核心CPU在性能方面提高40%,功耗反而降低40%。 作为对Intel的回应,7月24日,AMD宣布对双核Athlon64 X2处理器进行大降价。两大CPU巨头在宣传多核心CPU时,都会强调其节能效果。Intel发布的低电压版4核心至强CPU功耗仅为50瓦。而AMD的“Barcelona”4核心CPU的功耗也没超过95瓦。在Intel高级副总裁Pat Gelsinger看来,摩尔定律还是有生命力的,因为“CPU从单核心到双核心,再到多核心的发展,可能是摩尔定律问世以来,CPU芯片性能提升最快的时期” [9]。CPU 技术发展要比软件技术发展更快 ,软件对多核心CPU的支持相对滞后。如果没有操作系统的支持,多核心CPU的性能提升优势不能发挥出来。同样运行Win7的情况下,4核心CPU和8核心CPU所带来的差异化体验并不明显,导致这种情况的原因是Win7根本没有对8核心CPU进行相应的优化。而在Win10出来后,8核心CPU所带来的体验速度就明显要比4核心处理器快很多,这源于微软在Win10上对多核心CPU的支持做了优化。而且微软还将在Win10上针对多核心CPU做进一步适配优化。 目前 核心最多的服务器CPU 有Intel至强铂金9282,56核心112线程,引线焊球多达5903个,估计售价约4万美元;AMD霄龙 7H12,64核心128线程,散热设计功耗280W。这两款CPU都需要采用液冷散热。 核心最多的台式机CPU 有Intel酷睿i97980XE至尊版,18核心36线程,散热设计功耗165W,售价1999美元;AMD的Ryzen9 5950X,16核心32线程,散热设计功耗105W,售价6049元。 核心最多的手机SoC 有Apple M1、麒麟9000、高通骁龙 888等。多核心CPU或者多核心SoC似乎成为一种潮流,但是不是核心越多CPU就越好呢?在不考虑其它因素影响,单从技术和集成度考虑的话,有人甚至预测到2050年,人们可能会用上1024个核心的CPU芯片。 我们先从任务处理的角度来看这个问题。如果把CPU处理的事情叫做任务的话,以前的CPU只有一个核心,CPU只会“一心一用”地处理一个任务,干完一件事再接着干下一件事。专业上称之为 串行单任务处理 。这在DOS操作系统的时代是合适的,这个时期对CPU的追求只有一条,那就是处理速度要尽可能地快。在Windows操作系统出现后,出现了多任务的处理需求,要求CPU可以“一心多用”,同时干多件事情。专业上称之为 分时多任务处理 。这个时期对CPU的追求 一是 处理速度要尽可能地快, 二是 同时可处理的任务尽可能地多。其实这种“一心多用”的处理方法是把时间分配给了多个任务,从宏观上看CPU处理的任务多了,但从某项任务来看CPU对该项任务的处理速度变慢了。 要实现CPU处理的任务更多、处理速度更快,人们自然想到了在芯片中集成多个CPU核心,采用“多心多用”的方式处理事务,因而就出现了多核心CPU的需求,而这种需求在服务器CPU应用方面显得尤为迫切。 我们再从提高CPU时钟频率,加快处理速度的角度来看这个问题。无论是“一心一用”、“一心多用”、还是“多心多用”,只要提高了CPU的时钟频率,CPU的处理速度都会加快。如论是单任务还是多任务,就会在更短时间完成任务。因此,CPU发展的历史就是随着芯片技术的进步,CPU的时钟频率不断提升的历史,从早期的MHz级别不断提升到目前的GHz级别,大约提升了1000倍左右。无论是单核心还是多核心,CPU时钟频率是人们选用CPU芯片的重要指标。 过去很长一段时间里,随着Intel和AMD CPU速度越来越快,x86操作系统上的软件的性能和速度自然会不断提高,系统整机厂家只要对现有软件作轻微设置就能坐享电脑系统整体性能提升的好处。 但是随着芯片工艺沿着摩尔定律发展,CPU集成度提高、晶体管密度加大,时钟频率提升,直接导致CPU芯片的功率不断增大,散热问题成为一个无法逾越的障碍。据测算,CPU主频每增加1GHz,功耗将上升25瓦,而在芯片功耗超过150瓦后,现有的风冷散热将无法满足要求。2003年前后Intel推出的主频为3.4GHz的Pentium4至尊版CPU芯片,最高功耗已达135瓦,有人给它送了一个“电炉”的绰号,更有好事者用它来玩煎蛋的游戏。现在的服务器CPU芯片Xeon W-3175标称功耗为255W,默认频率实测能达到380W,超频的话甚至会突破500W,必须采用高端水冷系统来降温。 所以,功耗极限制约着CPU频率的提升。下图是CPU功率密度随时间的变化趋势图,IntelPentium之后的CPU芯片,由于晶体管密度和时钟频率提升,CPU芯片的功率密度陡然上升,CPU产生的热量将会超过太阳表面。 综上所述,追求多任务处理功能,追求处理速度提升是CPU芯片设计的两大目标。以提升CPU时钟频率而加快处理速度又受到CPU功耗极限的制约,多核心CPU芯片成为解决上述矛盾的必由之路。目前,多核心CPU和SoC已成为处理器芯片发展的主流。 与单核心CPU相比,多核心CPU在体系结构、软件、功耗和安全性设计等方面面临着巨大的挑战,但也蕴含着巨大的潜能。本文参考了后附的参考资料1,对多核心CPU用到的技术作如下简单介绍。1. 超线程技术一个传统CPU核心只有一个运算处理单元(Processing Unit,简称PU)和一个架构状态单元(Architectual State,简称AS),在同一时间只能处理一个软件线程(Thread)。采用了 超线程 (Hyper-Threading,简称 HT )技术的CPU核心中包含一个PU和两个AS,两个AS共用这个PU。软件在CPU核心上运行时,AS与软件线程对接,并把线程的任务分配到PU中的相关单元中。所以,两个AS就可以处理两个软件线程。 用生产车间打个比方,PU是生产部门,有几台机床用于生产;AS是跟单员,他同时只能跟一个任务订单;软件线程好比是任务订单。如果生产车间只有一个AS时,这个车间同时只能处理一个任务订单,PU的有些机床有事干,有些机床可能无事干而闲置。如果有两个AS时,就能处理两个任务订单,并把任务分配到不同的机床上去完成。 所以,具有超线程的CPU核心的集成度增加量不大,但有两个AS后使它看起来像两个逻辑的CPU核心,就可以同时处理两个软件线程,大约可以提高40%的处理能力。所以,我们经常可以看到CPU芯片广告,说某多核心CPU芯片是N个核心,2×N个线程,就是采用了超线程带来的好处。否则,如果没有采用超线程技术的话,多核心CPU芯片参数就只能写成N个核心,N个线程。下图给出了2核心CPU无超线程和有超线程的示意图。2. 核心结构研究多核心CPU的结构分成 同构 (homogeneous)多核和 异构 (heterogeneous)多核两类,同构多核是指芯片内多个CPU核心的结构是相同的,而异构多核是指芯片内多个CPU核心的结构各不相同。面对不同的应用场景,研究核心结构的实现方式对CPU整体性能至关重要。核心本身的结构,关系到整个芯片的面积、功耗和性能。怎样继承和发展传统CPU的成果,也直接影响多核的性能和实现周期。同时,核心所用的指令系统对系统的实现也是很重要的,多核心采用相同的指令系统还是不同的指令系统,能否运行操作系统等,也是设计者要研究的重要问题。3.Cache 设计技术CPU和主存储器之间的速度差距对多核心CPU来说是个突出的矛盾,因此必须使用多级Cache来缓解。可分为共享一级Cache、共享二级Cache和共享主存三种方式。多核心CPU一般采用共享二级Cache的结构,即每个CPU核心拥有私有的一级Cache,并且所有CPU核心共享二级Cache。 Cache本身的体系结构设计直接关系到系统整体性能。但是在多核心CPU中,共享Cache或独有Cache孰优孰劣、是否在片上建立多级Cache、以及建立几级Cache等,对整个芯片尺寸、功耗、布局、性能以及运行效率等都有很大的影响,需要认真研究和慎重对待。同时还要考虑多级Cache引发的一致性问题。4. 核心间通信技术多核心CPU的各核心同时执行程序,有时需要在核心之间进行数据共享与同步,因此硬件结构必须支持CPU核心间的通信。高效通信机制是多核心CPU高性能的重要保障,比较主流的片上高效通信机制有两种, 一种 是基于总线共享的Cache结构,另 一种 是基于片上的互连结构。总线共享Cache结构 是指每个CPU核心拥有共享的二级或三级Cache,用于保存比较常用的数据,并通过核心间的连接总线进行通信。它的优点是结构简单,通信速度高,缺点是基于总线的结构可扩展性较差。片上互连的结构 是指每个CPU核心具有独立的处理单元和Cache,各个CPU核心通过交叉开关电路或片上网络等方式连接在一起。各个CPU核心间通过消息进行通信。这种结构的优点是可扩展性好,数据带宽有保证,缺点是硬件结构复杂,且软件改动较大。5. 总线设计技术传统CPU中,Cache不命中或访问存储器事件都会对CPU的执行效率产生负面影响,而总线接口单元(BIU)的工作效率会决定此影响的程度。在多核心CPU中,当多个CPU核心同时要求访问内存,或多个CPU核心内私有Cache同时出现Cache不命中事件时,BIU对这些访问请求的仲裁机制效率,以及对外存储访问的转换机制的效率决定了多核心CPU系统的整体性能。6. 针对多核心的操作系统对于多核心CPU,优化操作系统的 任务调度 是提升执行效率的关键。任务调度算法有 全局 队列调度和 局部 队列调度之分。前者是指操作系统维护一个全局的任务等待队列,当系统中有一个CPU核心空闲时,操作系统就从全局任务等待队列中选取就绪任务开始在此核心上执行。其优点是CPU核心利用率较高。后者是指操作系统为每个CPU核心维持一个局部的任务等待队列,当系统中有一个CPU核心空闲时,便从该核心的任务等待队列中选取就绪任务来执行。其优点是有利于提高CPU核心局部Cache命中率。大多数的多核心CPU操作系统采用的是基于全局队列的任务调度算法。 多核心CPU的中断处理和单核CPU有很大不同。CPU核心之间需要通过中断方式进行通信和协调,所以,CPU核心的本地中断控制器和仲裁各CPU核心之间中断的全局中断控制器需要封装在芯片内部。 另外,多核心CPU操作系统是一个多任务系统。由于不同任务会竞争共享资源,因此需要系统提供同步与互斥机制。而传统的用于单核心CPU的解决机制并不能满足多核心的情况,需要利用硬件提供的“读-修改-写”的原始操作或其他同步互斥机制来进行保证。7. 低功耗设计技术每两三年CPU晶体管密度和功耗密度都会翻倍。低功耗和热优化设计已经成为多核心CPU设计的重点。需要同时在操作系统级、算法级、结构级、电路级等多个层次上考虑。每个层次上实现的效果不同,抽象层次越高,功耗和温度降低的效果越明显。8. 可靠性及安全性设计技术在今天的信息社会,CPU的应用无处不在,对CPU的可靠性和安全性提出了更高要求。一方面多核心CPU复杂性提高,低电压、高主频、高温度对维持芯片安全运行带来挑战。另一方面,来自外界恶意攻击越来越多,手段越来越先进,高可靠、安全性设计技术越来越受到重视。 要弄明白多核心CPU是如何工作,要从应用程序、操作系统和CPU核心一起来分析。Windows操作系统作为任务调度者,按照 进程 (Process)和 线程 (Thread)为应用程序(Program)分配程序执行的硬件资源——CPU核心。一个进程对应一个应用程序,但是一个应用程序可以同时对应多个进程,通过多个进程来完成这个程序的执行。 应用程序未执行的时候是“静态”的,程序一旦被用户启动执行,就被操作系统接管变成“动态”的了。操作系统按照一个一个的 进程 管理着一批被用户启动了的程序。所以一个 进程 可以看作是一个“执行中的程序”,进程中包括了由操作系统分配给这个程序的基本资源。 一个进程又被细分为多个 线程 ,只有 线程 才能通过操作系统获得CPU核心的使用权限来让自己运行。只包含一个线程的进程可以叫做 单线程 程序,如果包含多个线程的进程,就可以叫做 多线程 程序了。 程序的线程要想获得CPU时间,必须进入操作系统的线程队列排队,经过操作系统调度之后,获得某个CPU核心的执行时间。操作系统对CPU核心的分派是非常复杂的过程,谁也无法用简短的文字说清楚具体详细的过程。以下按单核心CPU和4核心CPU两种情况来示意说明,程序进程的一个个线程,是如何分派到CPU核心上进行执行的[7]。 如果CPU是单核心的话,而且没有采取超线程技术,线程队列就只有1个,线程的选择也只有1个。如果采取了超线程技术,单核心就扩展成2个逻辑核心,线程队列就有2个,线程的选择就有2个。 如果站在多核心CPU角度看,每个CPU核心不断从操作系统收到要执行的软件线程,按照程序指令去完成规定任务,它可能要使用存储器、运算器、输入输出等部件,还要与其它CPU核心进行通信和传递数据,完成任务后还要报告。这些过程可看成一个一个的事件,都要通过事件中断处理部件来协调。多核心CPU的硬件调度处理模式大致有三种[8][18]。1. 对称多处理 (Symmetric Multi-Processing,简称 SMP )是目前使用最多的模式。在SMP模式下,一个操作系统同等地管理着各个CPU核心,并为各个核心分配工作负载。目前,大多数的操作系统都支持SMP模式,例如Linux,Windows,Vxworks等。另外,这种模式通常用在同构多核CPU上,因为异构多核CPU的结构不同,实现SMP比较复杂。2. 非对称多处理 (Asymmetric Multi-Processing,简称 AMP )是指多个核心相对独立地运行着不同的任务,每个核心可能运行不同的操作系统或裸机程序,或者不同版本的操作系统,但是有一个 主导 的CPU核心,用来控制其它 从属 的CPU核心以及整个系统。这种模式大多情况是异构多核心CPU。例如MCU + DSP,MCU +FPGA等。当然,同构多核心CPU也可以用。3. 边界多处理 (Bound Multi-processing,简称 BMP )与SMP基本相同,唯一区别是开发者可以定义某个任务仅在某个CPU核心上执行。 以上只是原理性的简单介绍,如果要了解多核心CPU的硬件调度原理和实现细节,恐怕只能打进Intel或AMD公司内部,才能了解更多技术详情。 多核心CPU中的核心是否越多越好,多CPU系统中的CPU芯片是否也越多越好?同样条件下是否具有超线程就比不具有超线程的好?回答是仁者见仁,智者见智。主要是要分清用在哪些场合,不能一概而论。 首先,多核心CPU或者多CPU之间需要同步和调度,这是以时间开销和算力损耗为代价的。如果CPU核心数或者CPU芯片数增加对系统处理能力提升是加分项的话,同步和调度带来的时间开销和算力损耗就是减分项。如果加分大于减分,而且成本增加可接受的话,则方案是可行的,否则就是不值当的方案。系统方案的评判除了要考虑CPU核心数量以外,还要考虑操作系统的差异、调度算法的不同,应用和驱动程序特点等因素,它们共同影响着系统的处理速度。以下是一些文章的讨论观点。1 . CPU核心越多,执行速度不一定越快。这里说的是“不一定”,因为一个线程可能要等待其它线程或进程完成后,才能轮到它继续执行。在它等待别的线程或进程的时候,即便排队队列轮到了它,它也只能放弃运行权利而继续等待,让队列后续线程超过它在CPU上执行。对它这个线程的程序来说是变慢了,但对系统来说,它起码它让开了位置让其它线程继续运行。多核心CPU肯定可以加速批量进程的执行,但对某个进程或者某类型的程序来说,未必是最快的。2 .智能手机要向用户提供优秀的使用体验,不仅仅是靠CPU性能一个方面。除了CPU核心数这个因素以外,还应包括决定通信质量的基带芯片的性能,再加上GPU的性能、游戏和VR应用性能等。系统综合性能好才是真的好。3 .联发科2015年推出10核心、3重架构等手机SoC芯片技术,后来又开发了10核心、4重架构helio X30,通过多重架构的方式来降低功耗。虽然联发科在多核心SoC方面的技术优势是毋庸置疑,但是高通在2015年底推出了仅有四个核心的骁龙820芯片,苹果手机较早使用的SoC芯片也不过是双核心而已。这些都表明,对于智能手机而言,多核心CPU或SoC的意义到底大不大,不可绝对断言,需要从系统角度分析才能得出正确结论。结语 :多核心CPU和SoC是为了满足整机系统对处理能力和处理速度不断提升的需求,在单核心CPU沿着摩尔定律向前发展,受到了芯片功率极限阻碍时,人们不得不选择的一种突破路线。多核心CPU推动着操作系统的更新和升级,操作系统又决定了多核心CPU效能的发挥。多核心CPU技术的难点是多核心之间的信息传递、数据同步和任务调度等。系统性能优劣不能只考虑CPU核心数量,还要考虑操作系统、调度算法、应用和驱动程序等。多核心CPU技术和FinFET等3D芯片技术可以看作是延续摩尔定律生命的两大关键技术。欢迎分享,转载请注明来源:夏雨云
评论列表(0条)