服务器的CPU使用率多少算是正常

服务器的CPU使用率多少算是正常,第1张

服务器cpu的使用频率占指令总数的20%,但在程序中出现的频率却占80%。服务器是网络中的重要设备,要接受少至几十人、多至成千上万人的访问,因此对服务器具有大数据量的快速吞吐、超强的稳定性、长时间运行等严格要求。

服务器的CPU仍按CPU的指令系统来区分,通常分为CISC型CPU和RISC型CPU两类,后来又出现了一种64位的 VLIW(Very Long Instruction Word超长指令集架构)指令系统的CPU。

扩展资料:

优点

从当前的服务器发展状况看,以“小、巧、稳”为特点的IA架构(CISC架构)的PC服务器凭借可靠的性能、低廉的价格,得到了更为广泛的应用。在互联网和局域网领域,用于文件服务、打印服务、通讯服务、Web服务、电子邮件服务、数据库服务、应用服务等用途。

缺点

IA-64微处理器最大的缺陷是它们缺乏与x86的兼容,而Intel为了IA-64处理器能够更好地运行两个朝代的软件,它在IA-64处理器上(Itanium、Itanium2 ??)引入了x86-to-IA-64的解码器,这样就能够把x86指令翻译为IA-64指令。

这个解码器并不是最有效率的解码器,也不是运行x86代码的最好途径(最好的途径是直接在x86处理器上运行x86代码),因此Itanium 和Itanium2在运行x86应用程序时候的性能非常糟糕。这也成为X86-64产生的根本原因。

最后值得注意的一点,虽然CPU是决定服务器性能最重要的因素之一,但是如果没有其他配件的支持和配合,CPU也不能发挥出它应有的性能。

参考资料来源:百度百科-服务器CPU

服务器稳定性是最重要的,如果在稳定性方面不能够保证业务运行的需要,在高的性能也是无用的。

正规的服务器厂商都会对产品惊醒不同温度和湿度下的运行稳定性测试。重点要考虑的是冗余功能,如:数据冗余、网卡荣誉、电源冗余、风扇冗余等。

一些测试方法主要分以下几种:

压力测试:已知系统高峰期使用人数,验证各事务在最大并发数(通过高峰期人数换算)下事务响应时间能够达到客户要求。系统各性能指标在这种压力下是否还在正常数值之内。系统是否会因这样的压力导致不良反应(如:宕机、应用异常中止等)。

Ramp Up 增量设计:如并发用户为75人,系统注册用户为1500人,以5%-7%作为并发用户参考值。一般以每15s加载5人的方式进行增压设计,该数值主要参考测试加压机性能,建议Run几次。以事务通过率与错误率衡量实际加载方式。

Ramp Up增量设计目标: 寻找已增量方式加压系统性能瓶颈位置,抓住出现的性能拐点时机,一般常用参考Hits点击率与吞吐量、CPU、内存使用情况综合判断。模拟高峰期使用人数,如早晨的登录,下班后的退出,工资发送时的消息系统等。

另一种极限模拟方式,可视为在峰值压力情况下同时点击事务操作的系统极限操作指标。加压方式不变,在各脚本事务点中设置同集合点名称(如:lr_rendzvous("same"))在场景设计中,使用事务点集合策略。以同时达到集合点百分率为标准,同时释放所有正在Run的Vuser。

稳定性测试:已知系统高峰期使用人数、各事务操作频率等。设计综合测试场景,测试时将每个场景按照一定人数比率一起运行,模拟用户使用数年的情况。并监控在测试中,系统各性能指标在这种压力下是否能保持正常数值。事务响应时间是否会出现波动或随测试时间增涨而增加。系统是否会在测试期间内发生如宕机、应用中止等异常情况。

根据上述测试中,各事务条件下出现性能拐点的位置,已确定稳定性测试并发用户人数。仍然根据实际测试服务器(加压机、应用服务器、数据服务器三方性能),估算最终并发用户人数。

场景设计思想:

从稳定性测试场景的设计意义,应分多种情况考虑:

针对同一个场景为例,以下以公文附件上传为例简要分析场景设计思想:

1)场景一:已压力测试环境下性能拐点的并发用户为设计测试场景,目的验证极限压力情况下测试服务器各性能指标。

2)场景二:根据压力测试环境中CPU、内存等指标选取服务器所能承受最大压力的50%来确定并发用户数。

测试方法:采用1)Ramp Up-Load all Vusers simultaneously

2)Duration-Run Indefinitely

3)在Sechedule-勾选Initalize all Vusers before Run

容错性测试:通过模拟一些非正常情况(如:服务器突然断电、网络时断时续、服务器硬盘空间不足等),验证系统在发生这些情况时是否能够有自动处理机制以保障系统的正常运行或恢复运行措施。如有HA(自动容灾系统),还可以专门针对这些自动保护系统进行另外的测试。验证其能否有效触发保护措施。

问题排除性测试:通过原有案例或经验判断,针对系统中曾经发生问题或怀疑存在隐患的模块进行验证测试。验证这些模块是否还会发生同样的性能问题。如:上传附件模块的内存泄露问题、地址本模块优化、开启Tivoli性能监控对OA系统性能的影响等等。

测评测试是用于获取系统的关键性能指标点,而进行的相关测试。主要是针对预先没有明确的预期测试结果,而是要通过测试获取在特定压力场景下的性能指标(如:事务响应时间、最大并发用户数等)。

评测事务交易时间:为获取某事务在特定压力下的响应时间而进行的测试活动。通过模拟已知客户高峰期的各压力值或预期所能承受的压力值,获取事务在这种压力下的响应时间。

评测事务最大并发用户数:为获取某事务在特定系统环境下所能承受的最大并发用户数而进行的测试活动。通过模拟真实环境或直接采用真实环境,评测在这种环境下事务所能承受的最大并发用户数。判定标准阈值需预先定义(如响应时间,CPU占用率,内存占用率,已出现点击率峰值,已出现吞吐量峰值等)。

评测系统最大并发用户数:为获取整个系统所能够承受的最大并发用户数而进行的的测试活动。通过预先分析项目各主要模块的使用比率和频率,定义各事务在综合场景中所占的比率,以比率方式分配各事务并发用户数。模拟真实环境或直接采用真实环境,评测在这种环境下系统所能承受的最大并发用户数。判定标准阀值预先定义(如响应时间,CPU占用率,内存占用率,已出现点击率峰值,已出现吞吐量峰值等)。取值标准以木桶法则为准(并发数最小的事务为整个系统的并发数)。

评测不同数据库数据量对性能的影响:针对不同数据库数据量的测试,将测试结果进行对比,分析发现数据库中各表的数据量对事务性能的影响。得以预先判断系统长时间运行后,或某些模块客户要求数据量较大时可能存在的隐患。

问题定位测试在通过以上测试或用户实际操作已经发现系统中的性能问题或怀疑已存在性能问题。需通过响应的测试场景重现问题或定义问题。如有可能,可以直接找出引起性能问题所在的代码或模块。

该类测试主要还是通过测试出问题的脚本场景,并可以增加发现和检测的工具,如开启Tivoli性能监控、开启HeapDump输出、Linux资源监控命令等。并在场景运行过程中辅以手工测试。

一台服务器的稳定性与服务器本身的运行配置以及周围环境有着很大的关系。较高的配置可以在服务器运行时很好地增加稳定性。另一方面,服务器机房的条件设施都很完善,可以保障服务器运行环境中需要的恒温恒湿条件,各路由到服务器是通过光纤连接,可以减少服务器与路由的中间节点,加强网络信号,综合提高内外网络的稳定性。

当然万无一失的方法还是通过测试确定服务器的稳定性。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/61103.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-02-27
下一篇2023-02-27

发表评论

登录后才能评论

评论列表(0条)

    保存