linux系统用户空间中动态申请
内存的
函数为malloc (),这个函数在各种操作系统上的使用都是一致的,malloc ()申请的内存的释放函数为free()。对于Linux而言,C库的malloc ()函数一般通过brk ()和mmap ()两个系统调用从
内核申请内存。由于用户空间C库的malloc算法实际上具备一个二次管理能力,所以并不是每次申请和释放内存都一定伴随着对内核的系统调用。比如,代码清单11.2的应用程序可以从内核拿到内存后,立即调用free(),由于free()之前调用了mallopt(M_TRIM_THRESHOLD,一1)和mallopt (M_MMAP_MAX,0),这个free ()并不会把内存还给内核,而只是还给了C库的分配算法(内存仍然属于这个进程),因此之后所有的动态内存申请和释放都在用户态下进行。另外,Linux内核总是采用按需调页(Demand Paging),因此当malloc ()返回的时候,虽然是成功返回,但是内核并没有真正给这个进程内存,这个时候如果去读申请的内存,内容全部是0,这个页面的映射是只读的。只有当写到某个页面的时候,内核才在页错误后,真正把这个页面给这个进程。在Linux内核空间中申请内存涉及的函数主要包括kmalloc( ) 、get free pages ( )和vmalloc ()等。kmalloc ()和_get_free pages ()(及其类似函数)申请的内存位于DMA和常规区域的映射区,而且在物理上也是连续的,它们与真实的物理地址只有一个固定的偏移,因此存在较简单的转换关系。而vmalloc()在虚拟内存空间给出一块连续的内存区,实质上,这片连续的虚拟内存在物理内存中并不一定连续,而vmalloc ()申请的虚拟内存和物理内存之间也没有简单的换算关系。malloc与free是C++/C语言的标准库函数,new/delete是C++的运算符。它们都可用于申请动态内存和释放内存。
对于非内部数据类型的对象而言,光用maloc/free无法满足动态对象的要求。对象在创建的同时要自动执行构造函数,对象在消亡之前要自动执行析构函数。由于malloc/free是库函数而不是运算符,不在编译器控制权限之内,不能够把执行构造函数和析构函数的任务强加于malloc/free。因此C++语言需要一个能完成动态内存分配和初始化工作的运算符new,以及一个能完成清理与释放内存工作的运算符delete。注意new/delete不是库函数。
我们先看一看malloc/free和new/delete如何实现对象的动态内存管理,见示例:
[cpp]
class Obj
{
public :
Obj(void){ cout <<“Initialization” <<endl}
~Obj(void){ cout <<“Destroy” <<endl}
void Initialize(void){ cout <<“Initialization” <<endl}
void Destroy(void){ cout <<“Destroy” <<endl}
}
void UseMallocFree(void)
{
Obj*a = (obj *)malloc(sizeof(obj))// 申请动态内存
a->Initialize() // 初始化
//…
a->Destroy()// 清除工作
free(a) // 释放内存
}
void UseNewDelete(void)
{
Obj*a = new Obj // 申请动态内存并且初始化
//…
delete a// 清除并且释放内存
}
评论列表(0条)