十到二十万左右深度学习服务器推荐怎样的配置?

十到二十万左右深度学习服务器推荐怎样的配置?,第1张

深度学习的话,我还是可以有立场说些的。因为我们实验室当时就遇到了这些问题,选择深度学习GPU显卡时建议选择专门做液冷的A100或者RTX3090、RTXA6000、RTXA40等卡,蓝海大脑的液冷GPU服务器具有高性能,高密度⌄扩展性强等特点。液冷GPU服务器产品支持1~20块 GPU卡,还可以选择,毕竟能可以选择也是很好的,芯片主要采用龙芯、飞腾、申威、海光、英伟达、Intel、AMD。完全定制啊,敲开心。适用于深度学习训练及推理、生命科学、医药研发、虚拟仿真等场景,覆盖服务器、静音工作站、数据中心等多种产品形态,量身定制,满足客户全场景需求。技术人员给的建议都非常受用。

产品类型4U机架式1CPU金牌6326 16核心32线程 基频2.9GHZ 加速频率3.5GHZ TDP: 185W22内存512G(32GB*32) DDR4 3200MHZ14准系统超微420GP-TNR 4U机架式准系统, 带2200W冗余2+2电源平台最大支持lO个GPU32个DIMM插槽;母板超级X12DPG-OA6处理器中央处理器双插槽 P+ (LGA-4189)第三代英特尔 至强 可扩展处理器支持CPU TDP 270W核心高达40C/80T;高达 60MB 的缓存图形处理器支持的GPUHGX A100 8-GPU 40GB/80GB SXM4 多 GPU 15SSD三星PM9A1 1TB M.2接口 NVMe协议 四通道 PCIe4.0 固态硬盘16SATA希捷(Seagate)银河系列V6 6TB ST6000NM021A 7200RPM 256MB SATA3企业级硬盘17GPU卡英伟达RTX 4090公版4

深度学习是需要配置专门的GPU服务器的:

深度学习的电脑配置要求:

1、数据存储要求

在一些深度学习案例中,数据存储会成为明显的瓶颈。做深度学习首先需要一个好的存储系统,将历史资料保存起来。

主要任务:历史数据存储,如:文字、图像、声音、视频、数据库等。

数据容量:提供足够高的存储能力。

读写带宽:多硬盘并行读写架构提高数据读写带宽。

接口:高带宽,同时延迟低。

传统解决方式:专门的存储服务器,借助万兆端口访问。

缺点:带宽不高,对深度学习的数据读取过程时间长(延迟大,两台机器之间数据交换),成本还巨高。

2、CPU要求

当你在GPU上跑深度网络时,CPU进行的计算很少,但是CPU仍然需要处理以下事情:

(1)数据从存储系统调入到内存的解压计算。

(2)GPU计算前的数据预处理。

(3)在代码中写入并读取变量,执行指令如函数调用,创建小批量数据,启动到GPU的数据传输。

(4)GPU多卡并行计算前,每个核负责一块卡的所需要的数据并行切分处理和控制。

(5)增值几个变量、评估几个布尔表达式、在GPU或在编程里面调用几个函数——所有这些会取决于CPU核的频率,此时唯有提升CPU频率。

传统解决方式:CPU规格很随意,核数和频率没有任何要求。

3、GPU要求

如果你正在构建或升级你的深度学习系统,你最关心的应该也是GPU。GPU正是深度学习应用的核心要素——计算性能提升上,收获巨大。

主要任务:承担深度学习的数据建模计算、运行复杂算法。

传统架构:提供1~8块GPU。

4、内存要求

至少要和你的GPU显存存大小相同的内存。当然你也能用更小的内存工作,但是,你或许需要一步步转移数据。总而言之,如果钱够而且需要做很多预处理,就不必在内存瓶颈上兜转,浪费时间。

主要任务:存放预处理的数据,待GPU读取处理,中间结果存放。

深度学习需要强大的电脑算力,因此对电脑的硬件配置自然是超高的,那么现在普通的高算力电脑需要高配置硬件。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/657094.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-07-24
下一篇2023-07-24

发表评论

登录后才能评论

评论列表(0条)

    保存