如何选择合适的GPU服务器?

如何选择合适的GPU服务器?,第1张

选择GPU服务器时首先要考虑业务需求来选择适合的GPU型号。在HPC高性能计算中还需要根据精度来选择,比如有的高性能计算需要双精度,这时如果使用P40或者P4就不合适,只能使用V100或者P100;同时也会对显存容量有要求,比如石油或石化勘探类的计算应用对显存要求比较高;还有些对总线标准有要求,因此选择GPU型号要先看业务需求。

GPU服务器人工智能领域的应用也比较多。在教学场景中,对GPU虚拟化的要求比较高。根据课堂人数,一个老师可能需要将GPU服务器虚拟出30甚至60个虚拟GPU,因此批量Training对GPU要求比较高,通常用V100做GPU的训练。模型训练完之后需要进行推理,因此推理一般会使用P4或者T4,少部分情况也会用V100。

选择GPU服务器时首先要考虑业务需求来选择适合的GPU型号。在HPC高性能计算中还需要根据精度来选择,比如有的高性能计算需要双精度,这时如果使用P40或者P4就不合适,只能使用V100或者P100;同时也会对显存容量有要求,比如石油或石化勘探类的计算应用对显存要求比较高;还有些对总线标准有要求,因此,十次方平台建议您选择GPU型号要先看业务需求。

当GPU型号选定后,再考虑用什么样GPU的服务器。这时我们需要考虑以下几种情况:

第一、 在边缘服务器上需要根据量来选择T4或者P4等相应的服务器,同时也要考虑服务器的使用场景,比如火车站卡口、机场卡口或者公安卡口等;在中心端做Inference时可能需要V100的服务器,需要考虑吞吐量以及使用场景、数量等。

第二、

需要考虑客户本身使用人群和IT运维能力,对于BAT这类大公司来说,他们自己的运营能力比较强,这时会选择通用的PCI-e服务器;而对于一些IT运维能力不那么强的客户,他们更关注数字以及数据标注等,我们称这类人为数据科学家,选择GPU服务器的标准也会有所不同。

第三、 需要考虑配套软件和服务的价值。

第四、要考虑整体GPU集群系统的成熟程度以及工程效率,比如像DGX这种GPU一体化的超级计算机,它有非常成熟的操作系统驱动Docker到其他部分都是固定且优化过的,这时效率就比较高。

IW4211-8G GPU服务器,具有高性能、高密度、可扩展性强的特点,支持双路Intel® Xeon® Scalable 处理器,部分型号单CPU性能提升36%, 采用 Intel C622 芯片组设计,标配 12个硬盘位,双万兆光纤高速互联,可作为 GPU 计算集群超高密度、高性能的节点平台;标准的4U机架式服务器结构,整机系统设计可提供超强专业显卡扩展能力,加配后置风扇设计,能够保证系统在高配置下的散热和整机稳定性;是超大模型人工智能训练、HPC高密度计算的优选。你可以去咨询下思腾合力,它是英伟达的精英级合作伙伴,而且思腾合力IW4211-8G/8Gs/16G配置CPU与GPU间的连接拓扑有三种:Common模式、Cascaded模式及Balanced模式,三种拓扑间通过变换线缆连接方式进行变换,根据不同应用下的实测数据进行调优使用。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/664601.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-07-26
下一篇2023-07-26

发表评论

登录后才能评论

评论列表(0条)

    保存