德国研究团队给出一个原因,这个原因出乎意料:人类会关注图中对象的形状,深度学习计算机系统所用的算法不一样,它会研究对象的纹理。
首先人类向算法展示大量图片,有的图片有猫,有的没有。算法从图片中找到“特定模式”,然后用模式来做出判断,看看面对之前从未见过的图片应该贴怎样的标签。
神经网络架构是根据人类视觉系统开发的,网络各层连接在一起,从图片中提取抽象特点。神经网络系统通过一系列联系得出正确答案,不过整个处理过程十分神秘,人类往往只能在事实形成之后再解释这个神秘的过程。研究人员修改图片,欺骗神经网络,看看会发生什么事。研究人员发现,即使只是小小的修改,系统也会给出完全错误的答案,当修改幅度很大时,系统甚至无法给图片贴标签。还有一些研究人员追溯网络,查看单个神经元会对图像做出怎样的反应,理解系统学到了什么。
德国图宾根大学科学家Geirhos领导的团队采用独特方法进行研究。去年,团队发表报告称,他们用特殊噪点干扰图像,给图像降级,然后用图像训练神经网络,研究发现,如果将新图像交给系统处理,这些图像被人扭曲过(相同的扭曲),在识别扭曲图像时,系统的表现比人好。不过如果图像扭曲的方式稍有不同,神经网络就无能为力了,即使在人眼看来图像的扭曲方式并无不同,算法也会犯错。当你在很长的时间段内添加许多噪点,图中对象的形状基本不会受到影响;不过即使只是添加少量噪点,局部位置的架构也会快速扭曲。研究人员想出一个妙招,对人类、深度学习系统处理图片的方式进行测试。
算法将图像分成为小块,接下来,它不会将信息逐步融合,变成抽象高级特征,而是给每一小块下一个决定,比如这块包含自行车、那块包含鸟。再接下来,算法将决定集合起来,判断图中是什么,比如有更多小块包含自行车线索,所以图中对象是自行车。算法不会考虑小块之间的空间关系。结果证明,在识别对象时系统的精准度很高。
你好,这个问题可以这样解决:方法一:右键单击ai图标选择属性/更改图标/浏览,在打开的窗口中选择ai_application.icon.ico,点击打开/确定/确定。方法二:右键单击ai图标选择属性,在快捷方式一栏中可以看到目标位置:"d:\programfiles(x86)\adobe\illustratorcs5\supportfiles\contents\windows\illustrator.exe"我是安装在d盘的。选择相应的文件夹并打开,在里面找到ai_application_icon.ico,创建一个它的副本(就是复制),再执行方法一,但是这次要选择ai_application_icon.ico副本。欢迎分享,转载请注明来源:夏雨云
评论列表(0条)