SMT线路板是表面贴装设计中不可缺少的组成之一.SMT线路板是电子产品中电路元件与器件的支撑件,它实现了电路元件和器件之间的电气连接.随著电子技术发展,PCB板的体积越来越小,密度也越来越高,并且PCB板层不断地增加,因此,要求PCB在整体布局,抗干扰能力,工艺上和可制造性上要求越来越高.
印刷电路板设计的主要步骤
1:绘制原理图.
2:元件库的创建.
3:建立原理图与印制板上元件的网路连接关系.
4:布线和布局.
5:创建印制板生产使用资料和贴装生产使用资料.
印制电路板的设计过程中要考虑以下问题:
要确保电路原理图元件图形与实物相一致和电路原理图中网路连接的正确性.
印制电路板的设计不仅仅是考虑原理图的网路连接关系,而且要考虑电路工程 的一些要求,电路工程的要求主要是电源线,地线和其他一些导线的宽度,线路的连接,一些元件的高频特性,元件的阻抗,抗干扰等.
印制电路板整机系统安装的要求,主要考虑安装孔,插头,定位孔,基准点等
都要满足要求,各种元件的摆放位置和准确地安装在规定的位置,同时要便於安装,系统调试,以及通风散热.
印制电路板的可制造性上和它的工艺性上的要求,要熟悉设计规范和满足生产
工艺要求,使设计出的印制电路板能顺利地进行生产.
在考虑元器件在生产上便於安装,调试,返修,同时印制电路板上的图形,焊
盘,过孔等要标准,确保元器件之间不会碰撞,又方便地安装.
设计出印制电路板的目的主要是应用,因此我们要考虑它的实用性和可靠性,
同时减少印制电路板的板层和面积,从而来降低成本,适当大一些的焊盘,通孔,走线等有利於可靠性的提高,减少过孔,优化走线,使其疏密均匀,一致性好,使板面的整体布局美观一些.
一,要使所设计的电路板达到预期的目的,印刷电路板的整体布局,元器件的摆放位置起著关键作用,它直接影响到整个印刷电路板的安装,可靠性,通风散热,布线的直通率.
PCB上的元件位置和外形确定后,再考虑PCB的布线
二,为了使所设计的产品更好有效地工作,PCB在设计中不得不考虑它的抗干扰能力,并且与具体的电路有著密切的关系.
三,线路板的元件和线路设计完成后,接上来要考虑它的工艺设计,目的将各种不良因素消灭在生产开始之前,同时又要兼顾线路板的可制造性,以便生产出优质的产品和批量进行生产.
前面在说元件得定位及布线时已经把线路板的工艺方面涉及到一些.线路板的工艺设计主要是把我们设计出的线路板与元件通过SMT生产线有机的组装在一起,从而实现良好电气连接达到我们设计产品的位置布局.焊盘设计,布线以抗干扰性等还要考虑我们设计出的板子是不是便於生产,能不能用现代组装技术-SMT技术进行组装,同时要在生产中达到不让产生不良品的条件产生设计高度.具体有以下几个方面:
1:不同的SMT生产线有各自不同的生产条件,但就PCB的大小,pcb的单板尺寸不小於200*150mm.如果长边过小可以采用拼版,同时长与宽之比为3:2或4:3电路板面尺寸大於200×150mm时,应考虑电路板所受的机械强度.
2:当电路板尺寸过小,对於SMT整线生产工艺很难,更不易於批量生产,最好方法采用拼板形式,就是根据单板尺寸,把2块,4块,6块等单板组合到一起,构成一个适合批量生产的整板,整板尺寸要适合可贴范围大小.
3:为了适应生产线的贴装,单板要留有3-5mm的范围不放任何元件,拼板留有3-8mm的工艺边,工艺边与PCB的连接有三种形式:A无搭边,有分离槽,B有搭边,又有分离槽,C有搭边,无分离槽.设有冲裁用工艺搭国.根据PCB板的外形,有途等适用不同的拼板形式.对PCB的工艺边根据不同机型的定位方式不同,有的要在工艺边上设有定位孔,孔的直径在4-5厘米,相对比而言,要比边定位精度高,因此有定位孔定位的机型在进行PCB加工时,要设有定位孔,并且孔设计的要标准,以免给生产带来不便.
4:为了更好的定位和实现更高的贴装精度,要为PCB设上基准点,有无基准点和设的好与坏直接影响到SMT生产线的批量生产.基准点的外形可为方形,圆形,三角形等.并且直径大约在1-2mm范围之内,在基准点的周围要在3-5mm的范围之内,不放任何元件和引线.同时基准点要光滑,平整,不要任何污染.基准点的设计不要太靠近板边,要有3-5mm的距离.
5:从整体生产工艺来说,其板的外形最好为距形,特别对於波峰焊.采用矩形便於传送.如果PCB板有缺槽要用工艺边的形式补齐缺槽,对於单一的SMT板允许有缺槽.但缺槽不易过大应小於有边长长度的1/3.
总之,不良品的产生是每一个环节都有可能,但就PCB板设计这个环节,应该从 各个方面去考虑,让其即很好实现我们设计该产品目的,又要在生产中适合SMT生产线的批量生产,尽力设计出高质量的PCB板,把出现不良品的机率降到最低.
一、地线的设计要点在电气设备中绝大多数的干扰问题都可以通过正确的屏蔽以及合理的接地来解决,所以我们一定要对接地设计工作予以足够的重视。接地系统由模拟地、数字地、机壳地以及系统地等四大部分组成,其中数字地也称作逻辑地,机壳地也称作屏蔽地。下面我们介绍一下在接地设计中需要注意的几个方面:
1、合理选择接地方式
通常有多点接地以及单点接地两种接地方式,所以我们要进行合理选择。在设备的工作频率超过10MHz的情况下,由于地线抗阻的过大会给设备的正常运行带来不良的影响,所以我们应该尽量选择多点接地来达到降低地线阻抗的目的。同理,当电路的工作频率达不到1MHz的情况下,我们就要采取一点接地的方式来避免形成的环流影响到干扰。所以,在1~10MHz的工作频率内的电路在波长是其地线长度的20倍以内时可采用多点接地,否则需要采用单点接地的方法。
2、分离模拟电路与数字电路
由于电路板非常复杂,上面既有线性电路还有告诉逻辑电路,所以我们就应该将他们分离开来,避免两者的混淆,并且通过分别进行与电源端接地的方式来避免出现混接,与此同时也要讲线性电路的接地面积尽量扩大。
3、选择较粗的接地线
在选择较细的接地线的情况下,会导致电流的变化带动接地电位的变化,最后导致电子设备无法稳定运行,大大降低了它的抗噪性能。所以我们要选择较粗的接地线,通过增大它的允许电流来达到稳定设备信号的目的,在条件允许的情况下,选择宽度在3mm以上的接电线。
二、电磁兼容性的设计要点
由于电子设备的工作环境复杂多变,我们就要求其有更好的电磁环境适应能力,并且还要减少对其他电子设备的电磁干扰这就需要对电磁兼容性方面进行相应的设计,所以电子设备的电磁兼容性设计也是我们工作的重点之一。
1、选择正确的布线方式
通过采用平行走线的方法可以大幅度降低导线的电感,但是会导致导线之间分布电容以及互感的不断增大,所以在条件允许的情况下,我们可以在布线时采用井字形的结构,具体的布线方法就是在印制板的两个面采取不同的布线方式,一面是纵向、一面为横线,使用金属化孔在交叉孔处连接。由于印制板导线之间还有串扰作用,所以我们在不显得时候应该控制出现长距离平行走线的情况。
2、选择正确宽度的导线由于经常出现冲击干扰的情况,所以我们在印制导线的时候要控制瞬变电流,主要的方法就是控制印制导线时电感量的产生。而电感量的多少与导线的宽度成反比,与倒显得长度成正比,所以我们应该尽量去选择一些既粗又短的导线,这对抑制干扰非常有效。由于总线驱动器、行驱动器以及时钟引线的信号经常出现非常大的顺便电流,所以在上述选线时,应该选择短的导线。对于那些集成电路,我们应该将导线的宽度控制在1~0.2mm之间,对于分立组件电路,将宽度控制在1.5mm左右。
三、电路板上器件与尺寸的设计要点
印制电路板大小要适中,过大时印制线条长,阻抗增加,不仅抗噪声能力下降,成本也高;过小,则散热不好,同时易受临近线条干扰。 在器件布置方面与其它逻辑电路一样,应把相互有关的器件尽量放得靠近些,这样可以获得较好的抗噪声效果。时钟发生器、晶振和CPU的时钟输入端都易产生噪声,要相互靠近些。易产生噪声的器件、小电流电路、大电流电路等应尽量远离逻辑电路,如有可能,应另做电路板,这一点十分重要。
四、散热设计要点
从有利于散热的角度出发,印制版最好是直立安装,板与板之间的距离一般不应小于2cm,而且器件在印制版上的排列方式应遵循一定的规则:
对于采用自由对流空气冷却的设备,最好是将集成电路(或其它器件)按纵长方式排列;对于采用强制空气冷却的设备,最好是将集成电路(或其它器件)按横长方式排。
同一块印制板上的器件应尽可能按其发热量大小及散热程度分区排列,发热量小或耐热性差的器件(如小信号晶体管、小规模集成电路、电解电容等w ww.pcbwork.net)放在冷却气流的最上流(入口处),发热量大或耐热性好的器件(如功率晶体管、大规模集成电路等)放在冷却气流最下游。在水平方向上,大功率器件尽量靠近印制板边沿布置,以便缩短传热路径;在垂直方向上,大功率器件尽量靠近印制板上方布置,以便减少这些器件工作时对其它器件温度的影响。
对温度比较敏感的器件最好安置在温度最低的区域(如设备的底部),千万不要将它放在发热器件的正上方,多个器件最好是在水平面上交错布局。
设备内印制板的散热主要依靠空气流动,所以在设计时要研究空气流动路径,合理配置器件或印制电路板。空气流动时总是趋向于阻力小的地方流动,所以在印制电路板上配置器件时,要避免在某个区域留有较大的空域。
了解PCB设计流程前要先理解什么是PCB。PCB是英文Printed Circuit Board(印制线路板或印刷电路板)的简称。通常把在绝缘材料上按预定设计制成印制线路、印制组件或者两者组合而成的导电图形称为印制电路。PCB于1936年诞生,美国于1943年将该技术大量使用于军用收音机内;自20世纪50年代中期起,PCB技术开始被广泛采用。目前,PCB已然成为“电子产品之母”,其应用几乎渗透于电子产业的各个终端领域中,包括计算机、通信、消费电子、工业控制、医疗仪器、国防军工、航天航空等诸多领域。以下为快点PCB学院整理的PCB设计流程详解。1、前期准备包括准备元件库和原理图。在进行PCB设计之前,首先要准备好原理图SCH元件库和PCB元件封装库。PCB元件封装库最好是工程师根据所选器件的标准尺寸资料建立。原则上先建立PC的元件封装库,再建立原理图SCH元件库。PCB元件封装库要求较高,它直接影响PCB的安装;原理图SCH元件库要求相对宽松,但要注意定义好管脚属性和与PCB元件封装库的对应关系。2、PCB结构设计根据已经确定的电路板尺寸和各项机械定位,在PCB设计环境下绘制PCB板框,并按定位要求放置所需的接插件、按键/开关、螺丝孔、装配孔等等。充分考虑和确定布线区域和非布线区域(如螺丝孔周围多大范围属于非布线区域)。3、PCB布局设计布局设计即是在PCB板框内按照设计要求摆放器件。在原理图工具中生成网络表(Design→Create Netlist),之后在PCB软件中导入网络表(Design→Import Netlist)。网络表导入成功后会存在于软件后台,通过Placement操作可以将所有器件调出、各管脚之间有飞线提示连接,这时就可以对器件进行布局设计了。PCB布局设计是PCB整个设计流程中的首个重要工序,越复杂的PCB板,布局的好坏越能直接影响到后期布线的实现难易程度。布局设计依靠电路板设计师的电路基础功底与设计经验丰富程度,对电路板设计师属于较高级别的要求。初级电路板设计师经验尚浅、适合小模块布局设计或整板难度较低的PCB布局设计任务。4、PCB布线设计PCB布线设计是整个PCB设计中工作量最大的工序,直接影响着PCB板的性能好坏。在PCB的设计过程中,布线一般有三种境界:首先是布通,这是PCB设计的最基本的入门要求;其次是电气性能的满足,这是衡量一块PCB板是否合格的标准,在线路布通之后,认真调整布线、使其能达到最佳的电气性能;再次是整齐美观,杂乱无章的布线、即使电气性能过关也会给后期改板优化及测试与维修带来极大不便,布线要求整齐划一,不能纵横交错毫无章法。5、布线优化及丝印摆放“PCB设计没有最好、只有更好”,“PCB设计是一门缺陷的艺术”,这主要是因为PCB设计要实现硬件各方面的设计需求,而个别需求之间可能是冲突的、鱼与熊掌不可兼得。例如:某个PCB设计项目经过电路板设计师评估需要设计成6层板,但是产品硬件出于成本考虑、要求必须设计为4层板,那么只能牺牲掉信号屏蔽地层、从而导致相邻布线层之间的信号串扰增加、信号质量会降低。一般设计的经验是:优化布线的时间是初次布线的时间的两倍。PCB布线优化完成后,需要进行后处理,首要处理的是PCB板面的丝印标识,设计时底层的丝印字符需要做镜像处理,以免与顶层丝印混淆。6、网络DRC检查及结构检查质量控制是PCB设计流程的重要组成部分,一般的质量控制手段包括:设计自检、设计互检、专家评审会议、专项检查等。原理图和结构要素图是最基本的设计要求,网络DRC检查和结构检查就是分别确认PCB设计满足原理图网表和结构要素图两项输入条件。一般电路板设计师都会有自己积累的设计质量检查Checklist,其中的条目部分来源于公司或部门的规范、另一部分来源于自身的经验总结。专项检查包括设计的Valor检查及DFM检查,这两部分内容关注的是PCB设计输出后端加工光绘文件。欢迎分享,转载请注明来源:夏雨云
评论列表(0条)