用于连接每个客户端,即客户端可调用所提供的这些函数访问HBase的数据
充当管家,主要作用:
a) 获知整个集群中哪些Region服务器在工作、哪些有故障
b) 一个表会被分为多个Region,每个Region被分配到哪个Region服务器由Master服务器决定
一整张表会被分为多个Region,它们由Region服务器负责维护和管理。
2006年以前常设计为100-200MB,现在一般配置为1~2GB。具体设计应取决于单台服务器的处理能力(存取速度、内存等)。
前面提到过一个Region增大到一定程度会被Master服务器拆分成多个小Region。但在存储方面,一个完整的Region(拆分前的)不会被存储到不同的Region服务器上。
三层寻址对应了三层表:
(1) -ROOT-表 :存储元数据表,即.MEAT.表的信息。它被“写死”在ZooKeeper文件中,是唯一的、不能再分裂的
(2) .META.表 :存储用户数据具体存储在哪些Region服务器上。它会随存储数据的增多而分裂成更多个。
(3) 用户数据表 :具体存储用户数据。它是最底层的、可分裂的
HBase采用 三级寻址 :
(1) ZooKeeper找到-ROOT-表地址
(2) -ROOT-表中找到需要的.META.表地址
(3) .META.表找到所需的用户数据表地址
(4) 最后从用户数据表取出目标数据
另外,为了加速寻址,客户端会 缓存已查数据的位置信息 (在客户端自己的缓存中),下次取相同的数据就可以快速访问。——但随Region的更新,缓存记录可能失效。对于这个问题,HBase采用惰性解决机制,即首先使用缓存的位置,如果在那个位置查不到目标数据,则按三级寻址重新查询,再更新缓存。
假设一个Region最大128MB(注意-ROOT-、.META.、用户表都是以Region形式存储的),一条映射条目大小1KB:
Reference:
https://www.icourse163.org/learn/XMU-1002335004#/learn/content?type=detail&id=1214310125&cid=1217922282
HBase 是典型的 NoSQL 数据库,通常被描述成稀疏的、分布式的、持久化的,由行键、列键和时间戳进行索引的多维有序映射数据库,主要用来存储非结构化和半结构化的数据。因为 HBase 基于 Hadoop 的 HDFS 完成分布式存储,以及 MapReduce 完成分布式并行计算,所以它的一些特点与 Hadoop 相同,依靠横向扩展,通过不断增加性价比高的商业服务器来增加计算和存储能力。HBase 虽然基于 Bigtable 的开源实现,但它们之间还是有很多差别的,Bigtable 经常被描述成键值数据库,而 HBase 则是面向列存储的分布式数据库。下面介绍 HBase 具备的显著特性,这些特性让 HBase 成为当前和未来最实用的数据库之一。容量巨大HBase 的单表可以有百亿行、百万列,可以在横向和纵向两个维度插入数据,具有很大的弹性。当关系型数据库的单个表的记录在亿级时,查询和写入的性能都会呈现指数级下降,这种庞大的数据量对传统数据库来说是一种灾难,而 HBase 在限定某个列的情况下对于单表存储百亿甚至更多的数据都没有性能问题。HBase 采用 LSM 树作为内部数据存储结构,这种结构会周期性地将较小文件合并成大文件,以减少对磁盘的访问。扩展性强HBase 工作在 HDFS 之上,理所当然地支持分布式表,也继承了 HDFS 的可扩展性。HBase 的扩展是横向的,横向扩展是指在扩展时不需要提升服务器本身的性能,只需添加服务器到现有集群即可。HBase 表根据 Region 大小进行分区,分别存在集群中不同的节点上,当添加新的节点时,集群就重新调整,在新的节点启动 HBase 服务器,动态地实现扩展。这里需要指出,HBase 的扩展是热扩展,即在不停止现有服务的前提下,可以随时添加或者减少节点。高可靠性HBase 运行在 HDFS 上,HDFS 的多副本存储可以让它在岀现故障时自动恢复,同时 HBase 内部也提供 WAL 和 Replication 机制。WAL(Write-Ahead-Log)预写日志是在 HBase 服务器处理数据插入和删除的过程中用来记录操作内容的日志,保证了数据写入时不会因集群异常而导致写入数据的丢失;而 Replication 机制是基于日志操作来做数据同步的。阅读数:9381Hbase概述
hbase是一个构建在HDFS上的分布式列存储系统。HBase是Apache Hadoop生态系统中的重要 一员,主要用于海量结构化数据存储。从逻辑上讲,HBase将数据按照表、行和列进行存储。
如图所示,Hbase构建在HDFS之上,hadoop之下。其内部管理的文件全部存储在HDFS中。与HDFS相比两者都具有良好的容错性和扩展性,都可以 扩展到成百上千个节点。但HDFS适合批处理场景,不支持数据随机查找,不适合增量数据处理且不支持数据更新。
Hbase是列存储的非关系数据库。传统数据库MySQL等,数据是按行存储的。其没有索引的查询将消耗大量I/O 并且建立索引和物化视图需要花费大量时间和资源。因此,为了满足面向查询的需求,数据库必须被大量膨胀才能满 足性能要求。
Hbase数据是按列存储-每一列单独存放。列存储的优点是数据即是索引。访问查询涉及的列-大量降低系统I/O 。并且每一列由一个线索来处理,可以实现查询的并发处理。基于Hbase数据类型一致性,可以实现数据库的高效压缩。
HBase数据模型
HBase是基于Google BigTable模型开发的, 典型的key/value系统。一个Row key对应很多Column Family,Column Family中有很多Column。其中,保存了不同时间戳的数据。
如图所示,Rowkey cutting对应列簇info和roles。其中,info中有key-value对hight-9ft,state-CA。更清晰的结构如下图所:
Hbase的所有操作均是基于rowkey的。支持CRUD(Create、Read、Update和Delete)和 Scan操作。 包括单行操作Put 、Get、Scan。多行操作包括Scan和MultiPut。但没有内置join操作,可使用MapReduce解决。
HBase物理模型
Hbase的Table中的所有行都按照row key的字典序排列。Table 在行的方向上分割为多个Region。、Region按大小分割的,每个表开始只有一个region,随 着数据增多,region不断增大,当增大到一个阀值的时候, region就会等分会两个新的region,之后会有越来越多的 region。
Region是HBase中分布式存储和负载均衡的最小单元。 不同Region分布到不同RegionServer上。
Region虽然是分布式存储的最小单元,但并不是存储 的最小单元。Region由一个或者多个Store组成,每个store保存一个 columns family。每个Strore又由一个memStore和0至多个StoreFile组成。memStore存储在内存中,StoreFile存储在HDFS上。
HBase基本架构
HBase构建在HDFS之上,其组件包括 Client、zookeeper、HDFS、Hmaster以及HRegionServer。Client包含访问HBase的接口,并维护cache来加快对HBase的访问。Zookeeper用来保证任何时候,集群中只有一个master,存贮所有Region的寻址入口以及实时监控Region server的上线和下线信息。并实时通知给Master存储HBase的schema和table元数据。HMaster负责为Region server分配region和Region server的负载均衡。如果发现失效的Region server并重新分配其上的region。同时,管理用户对table的增删改查操作。Region Server 负责维护region,处理对这些region的IO请求并且切分在运行过程中变得过大的region。
HBase 依赖ZooKeeper,默认情况下,HBase 管理ZooKeeper 实例。比如, 启动或者停止ZooKeeper。Master与RegionServers 启动时会向ZooKeeper注册。因此,Zookeeper的引入使得 Master不再是单点故障。
Client每次写数据库之前,都会首先血Hlog日志。记录写操作。如果不做日志记录,一旦发生故障,操作将不可恢复。HMaster一旦故障,Zookeeper将重新选择一个新的Master 。无Master过程中,数据读取仍照常进行。但是,无master过程中,region切分、负载均衡等无法进行。RegionServer出现故障的处理原理是定时向Zookeeper汇报心跳,如果一旦时 间内未出现心跳HMaster将该RegionServer上的Region重新分配到其他RegionServer上。失效服务器上“预写”日志由主服务器进行分割并派送给新的 RegionServer 。Zookeeper是一个可靠地服务,一般配置3或5个Zookeeper实例。
寻找RegionServer定位的顺序是ZooKeeper --ROOT-(单Region) -.META. -用户表 。如上图所示。-ROOT- 表包含.META.表所在的region列表,该表只会有一 个Region。 Zookeeper中记录了-ROOT-表的location。 .META. 表包含所有的用户空间region列表,以及 RegionServer的服务器地址。
HBase应用举例
Hbase适合需对数据进行随机读操作或者随机写操作、大数据上高并发操作,比如每秒对PB级数据进行上千次操作以及读写访问均是非常简单的操作。
淘宝指数是Hbase在淘宝的一个典型应用。交易历史纪录查询很适合用Hbase作为底层数据库。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)