1、根据企业的需求选择合适的线路
国内常用的线路是电信线路和网通线路,其中河南以及河南以北地区以网通为主,河南以及以南以网通为主,同等线路之间访问速度比较快,反之则访问速度比较慢,而双线线路则解决解决这一问题,所以可以根据企业的需求选择单线路或者双线路。
2、根据需求选择共享带宽或者是独立带宽
顾名思义,共享带宽是指和机房内的其他服务器共同使用一定的带宽,一般是100M.独享带宽是指独自使用一定的带宽。如果企业网站属于下载类、电影、访问量比较高的网站,可以选择独享带宽。如果网站是普通的文字类网站则可以选择共享带宽,在共享情况下一般带宽也可以达到10M或者10M以上。
3、硬件配置方面,选择高性能的硬件配置
至于服务器配置,可以选择较为经济的配置,如酷睿E5700、inter 四核 Q9300等,如果选择比较高端的,如Intel Xeon E5-2609 至强四核、Intel XEON E5620 至强四核八线程等,结合企业的需求进行选择。
4、选择正规的IDC商,省去很多后期麻烦
正规的IDC商一般都有营业执照、ICP证、ISP证等证件,之所以挑选正规的IDC商是因为服务器不是一般的电脑,需要24小时开机,对环境要求也比较高,并且运行过程中出现问题需要及时解决,一旦出现服务器不能正常运行了,不仅影响网站优化,还易降低用户体验,严重时可导致网站被k,需要很长时间才能恢复。而正规的IDC上都是有很高的信誉保障的,机房都有专业技术人员值班。
您好,搭建100人同时在线的网站。需要服务器每秒并发100,服务器最省钱的配置如下:服务器CPU:1核
服务器内存:2G
服务器宽带:3M(网站如果是文字多图片少可以选用1M)
服务器系统:liunx
服务器web:
Nginx
更多服务器配置优化,根据您实际情况而定!
深度学习是需要配置专门的GPU服务器的:
深度学习的电脑配置要求:
1、数据存储要求
在一些深度学习案例中,数据存储会成为明显的瓶颈。做深度学习首先需要一个好的存储系统,将历史资料保存起来。
主要任务:历史数据存储,如:文字、图像、声音、视频、数据库等。
数据容量:提供足够高的存储能力。
读写带宽:多硬盘并行读写架构提高数据读写带宽。
接口:高带宽,同时延迟低。
传统解决方式:专门的存储服务器,借助万兆端口访问。
缺点:带宽不高,对深度学习的数据读取过程时间长(延迟大,两台机器之间数据交换),成本还巨高。
2、CPU要求
当你在GPU上跑深度网络时,CPU进行的计算很少,但是CPU仍然需要处理以下事情:
(1)数据从存储系统调入到内存的解压计算。
(2)GPU计算前的数据预处理。
(3)在代码中写入并读取变量,执行指令如函数调用,创建小批量数据,启动到GPU的数据传输。
(4)GPU多卡并行计算前,每个核负责一块卡的所需要的数据并行切分处理和控制。
(5)增值几个变量、评估几个布尔表达式、在GPU或在编程里面调用几个函数——所有这些会取决于CPU核的频率,此时唯有提升CPU频率。
传统解决方式:CPU规格很随意,核数和频率没有任何要求。
3、GPU要求
如果你正在构建或升级你的深度学习系统,你最关心的应该也是GPU。GPU正是深度学习应用的核心要素——计算性能提升上,收获巨大。
主要任务:承担深度学习的数据建模计算、运行复杂算法。
传统架构:提供1~8块GPU。
4、内存要求
至少要和你的GPU显存存大小相同的内存。当然你也能用更小的内存工作,但是,你或许需要一步步转移数据。总而言之,如果钱够而且需要做很多预处理,就不必在内存瓶颈上兜转,浪费时间。
主要任务:存放预处理的数据,待GPU读取处理,中间结果存放。
深度学习需要强大的电脑算力,因此对电脑的硬件配置自然是超高的,那么现在普通的高算力电脑需要高配置硬件。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)