NTP服务器【Network Time Protocol(NTP)】是用来使计算机时间同步化的一种协议,它可以使计算机对其服务器或时钟源(如石英钟,GPS等等)做同步化,它可以提供高精准度的时间校正(LAN上与标准间差小于1毫秒,WAN上几十毫秒),且可介由加密确认的方式来防止恶毒的协议攻击。时间按NTP服务器的等级传播。按照离外部UTC源的远近把所有服务器归入不同的Stratum(层)中。
网络时间协议(NTP)用来同步网络上不同主机的系统时间。你管理的所有主机都可以和一个指定的被称为 NTP 服务器的时间服务器同步它们的时间。而另一方面,一个 NTP 服务器会将它的时间和任意公共 NTP 服务器,或者你选定的服务器同步。由 NTP 管理的所有系统时钟都会同步精确到毫秒级。
在公司环境中,如果他们不想为 NTP 传输打开防火墙,就有必要设置一个内部 NTP 服务器,然后让员工使用内部服务器而不是公共 NTP 服务器。在这个指南中,我们会介绍如何将一个 CentOS 系统配置为 NTP 服务器。在介绍详细内容之前,让我们先来简单了解一下 NTP 的概念。
为什么我们需要 NTP?
由于制造工艺多种多样,所有的(非原子)时钟并不按照完全一致的速度行走。有一些时钟走的比较快而有一些走的比较慢。因此经过很长一段时间以后,一个时钟的时间慢慢的和其它的发生偏移,这就是常说的 “时钟漂移” 或 “时间漂移”。为了将时钟漂移的影响最小化,使用 NTP 的主机应该周期性地和指定的 NTP 服务器交互以保持它们的时钟同步。
在不同的主机之间进行时间同步对于计划备份、入侵检测记录、分布式任务调度或者事务订单管理来说是很重要的事情。它甚至应该作为日常任务的一部分。
NTP 的层次结构
NTP 时钟以层次模型组织。层级中的每层被称为一个 stratum(阶层)。stratum 的概念说明了一台机器到授权的时间源有多少 NTP 跳。
Stratum 0 由没有时间漂移的时钟组成,例如原子时钟。这种时钟不能在网络上直接使用。Stratum N (N >1) 层服务器从 Stratum N-1 层服务器同步时间。Stratum N 时钟能通过网络和彼此互联。
NTP 支持多达 15 个 stratum 的层级。Stratum 16 被认为是未同步的,不能使用的。
准备 CentOS 服务器
现在让我们来开始在 CentOS 上设置 NTP 服务器。
首先,我们需要保证正确设置了服务器的时区。在 CentOS 7 中,我们可以使用 timedatectl 命令查看和更改服务器的时区(比如,"Australia/Adelaide",LCTT 译注:中国可设置为 Asia/Shanghai )
代码如下:
# timedatectl list-timezones | grep Australia
# timedatectl set-timezone Australia/Adelaide
# timedatectl
继续并使用 yum 安装需要的软件
代码如下:
# yum install ntp
然后我们会添加全球 NTP 服务器用于同步时间。
代码如下:
# vim /etc/ntp.conf
server 0.oceania.pool.ntp.org
server 1.oceania.pool.ntp.org
server 2.oceania.pool.ntp.org
server 3.oceania.pool.ntp.org
默认情况下,NTP 服务器的日志保存在 /var/log/messages。如果你希望使用自定义的日志文件,那也可以指定。
复制代码
代码如下:
logfile /var/log/ntpd.log
如果你选择自定义日志文件,确保更改了它的属主和 SELinux 环境。
复制代码
代码如下:
# chown ntp:ntp /var/log/ntpd.log
# chcon -t ntpd_log_t /var/log/ntpd.log
现在初始化 NTP 服务并确保把它添加到了开机启动。
代码如下:
# systemctl restart ntp
# systemctl enable ntp
验证 NTP Server 时钟
我们可以使用 ntpq 命令来检查本地服务器的时钟如何通过 NTP 同步。
下面的表格解释了输出列。
remote 源在 ntp.conf 中定义。‘*’ 表示当前使用的,也是最好的源‘+’ 表示这些源可作为 NTP 源‘-’ 标记的源是不可用的。
refid 用于和本地时钟同步的远程服务器的 IP 地址。
st Stratum(阶层)
t 类型。 'u' 表示单播(unicast)。其它值包括本地(local)、多播(multicast)、广播(broadcast)。
when 自从上次和服务器交互后经过的时间(以秒数计)。
poll 和服务器的轮询间隔,以秒数计。
reach 表示和服务器交互是否有任何错误的八进制数。值 337 表示 100% 成功(即十进制的255)。
delay 服务器和远程服务器来回的时间。
offset 我们服务器和远程服务器的时间差异,以毫秒数计。
jitter 两次取样之间平均时差,以毫秒数计。
控制到 NTP 服务器的访问
默认情况下,NTP 服务器允许来自所有主机的查询。如果你想过滤进来的 NTP 同步连接,你可以在你的防火墙中添加规则过滤流量。
# iptables -A INPUT -s 192.168.1.0/24 -p udp --dport 123 -j ACCEPT
# iptables -A INPUT -p udp --dport 123 -j DROP
该规则允许从 192.168.1.0/24 来的 NTP 流量(端口 UDP/123),任何其它网络的流量会被丢弃。你可以根据需要更改规则。
配置 NTP 客户端
1. Linux
NTP 客户端主机需要 ntpupdate 软件包来和服务器同步时间。可以轻松地使用 yum 或 apt-get 安装这个软件包。安装完软件包之后,用服务器的 IP 地址运行下面的命令。
代码如下:
# ntpdate
基于 RHEL 和 Debian 的系统命令都相同。
2. Windows
如果你正在使用 Windows,在日期和时间设置(Date and Time settings)下查找网络时间(Internet Time)。
3. Cisco 设备
如果你想要同步 Cisco 设备的时间,你可以在全局配置模式下使用下面的命令。
代码如下:
# ntp server
来自其它厂家的支持 NTP 的设备有自己的用于网络时间的参数。如果你想将设备和 NTP服务器同步时间,请查看设备的说明文档。
结论
总而言之,NTP 是在你的所有主机上同步时钟的一个协议。我们已经介绍了如何设置 NTP 服务器并使支持 NTP 的设备和服务器同步时间。
谐波的危害十分严重。谐波使电能的生产、传输和利用的效率降低,使电气设备过热、产生振动和噪声,并使绝缘老化,使用寿命缩短,甚至发生故障或烧毁。谐波可引起电力系统局部并联谐振或串联谐振,使谐波含量放大,造成电容器等设备烧毁。谐波还会引起继电保护和自动装置误动作,使电能计量出现混乱。对于电力系统外部,谐波对通信设备和电子设备会产生严重干扰。
“谐波”一词起源于声学。有关谐波的数学分析在18世纪和19世纪已经奠定了良好的基础。傅里叶等人提出的谐波分析方法至今仍被广泛应用。电力系统的谐波问题早在20世纪20年代和30年代就引起了人们的注意。当时在德国,由于使用静止汞弧变流器而造成了电压、电流波形的畸变。1945年J.C.Read发表的有关变流器谐波的论文是早期有关谐波研究的经典论文。到了50年代和60年代,由于高压直流输电技术的发展,发表了有关变流器引起电力系统谐波问题的大量论文。70年代以来,由于电力电子技术的飞速发展,各种电力电子装置在电力系统、工业、交通及家庭中的应用日益广泛,谐波所造成的危害也日趋严重。世界各国都对谐波问题予以充分和关注。国际上召开了多次有关谐波问题的学术会议,不少国家和国际学术组织都制定了限制电力系统谐波和用电设备谐波的标准和规定。
供电系统谐波的定义是对周期性非正弦电量进行傅立叶级数分解,除了得到与电网基波频率相同的分量,还得到一系列大于电网基波频率的分量,这部分电量称为谐波。谐波频率与基波频率的比值(n=fn/f1) 称为谐波次数。电网中有时也存在非整数倍谐波,称为非谐波(Non-harmonics)或分数谐波。谐波实际上是一种 干扰量,使电网受到“污染”。电工技术领域主要研究谐波的发生、传输、测量、危害及抑制,其频率范围一般 为2≤n≤40。 在工业和生活用电负载中,感性负载占有很大的比例。异步电动机、变压器、荧光灯等都是典型的阻感负载。异步电动机和变压器所消耗的无功功率在电力系统所提供的无功功率中占有很高的比例。电力系统中的电抗器和架空线等也消耗一些无功功率。阻感负载必须吸收无功功率才能正常工作,这是由其本身的性质所决定的。
电力电子装置等非线性装置也要消耗无功功率,特别是各种相控装置。 如相控整流器、相控交流功率调整电路和周波变流器,在工作时基波电流滞后于电网电压,要消耗大量的无功功率。另外,这些装置也会产生大量的谐波电流,谐波源都是要消耗无功功率的。二极管整流电路的基波电流相位和电网电压相位大致相同,所以基本不消耗基波无功功率。但是它也产生大量的谐波电流,因此也产生一定的无功功率。
近30年来,电力电子装置的应用日益广泛,也使得电力电子装置成为最大的谐波源。在各种电力电子装置中,整流装置所占的比例最大。常用的整流电路几乎都采用晶闸管相控整流电路或二极管整流电路,其中以三相桥式和单相桥式整流电路为最多。带阻感负载的整流电路所产生的谐波污染和功率因数滞后已为人们所熟悉。直流侧采用电容滤波的二极管整流电路也是严重的谐波污染源。这种电路输入电流的基波分量相位与电源电压相位大体相同,因而基波功率因数接近1。 但其输入电流的谐波分量却很大,给电网造成严重污染,也使得总的功率因数很低。另外,采用相控方式的交流电力调整电路及周波变流器等电力电子装置也会在输入侧产生大量的谐波电流。
(1)发电源质量不高产生谐波
发电机由于三相绕组在制作上很难做到绝对对称,铁心也很难做到绝对均匀一致和其他一些原因,发电源多少也会产生一些谐波,但一般来说很少。
(2)输配电系统产生谐波
输配电系统中主要是电力变压器产生谐波,由于变压器铁心的饱和,磁化曲线的非线性,加上设计变压器时考虑经济性,其工作磁密选择在磁化曲线的近饱和段上,这样就使得磁化电流呈尖顶波形,因而含有奇次谐波。它的大小与磁路的结构形式、铁心的饱和程度有关。铁心的饱和程度越高,变压器工作点偏离线性越远,谐波电流也就越大,其中3次谐波电流可达额定电流0.5%。
(3)用电设备产生的谐波:
晶闸管整流设备。由于晶闸管整流在电力机车、铝电解槽、充电装置、开关电源等许多方面得到了越来越广泛的应用,给电网造成了大量的谐波。我们知道,晶闸管整流装置采用移相控制,从电网吸收的是缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,显然在留下部分中含有大量的谐波。如果整流装置为单相整流电路,在接感性负载时则含有奇次谐波电流,其中3次谐波的含量可达基波的30%;接容性负载时则含有奇次谐波电压,其谐波含量随电容值的增大而增大。如果整流装置为三相全控桥6脉整流器,变压器原边及供电线路含有5次及以上奇次谐波电流;如果是12脉冲整流器,也还有11次及以上奇次谐波电流。经统计表明:由整流装置产生的谐波占所有谐波的近40%,这是最大的谐波源。
变频装置。变频装置常用于风机、水泵、电梯等设备中,由于采用了相位控制,谐波成份很复杂,除含有整数次谐波外,还含有分数次谐波,这类装置的功率一般较大,随着变频调速的发展,对电网造成的谐波也越来越多。
电弧炉、电石炉。由于加热原料时电炉的三相电极很难同时接触到高低不平的炉料,使得燃烧不稳定,引起三相负荷不平衡,产生谐波电流,经变压器的三角形连接线圈而注入电网。其中主要是2 7次的谐波,平均可达基波的8% 20%,最大可达45%。
气体放电类电光源。荧光灯、高压汞灯、高压钠灯与金属卤化物灯等属于气体放电类电光源。分析与测量这类电光源的伏安特性,可知其非线性十分严重,有的还含有负的伏安特性,它们会给电网造成奇次谐波电流。
家用电器。电视机、录像机、计算机、调光灯具、调温炊具等,因具有调压整流装置,会产生较深的奇次谐波。在洗衣机、电风扇、空调器等有绕组的设备中,因不平衡电流的变化也能使波形改变。这些家用电器虽然功率较小,但数量巨大,也是谐波的主要来源之一。
理想的公用电网所提供的电压应该是单一而固定的频率以及规定的电压幅值。谐波电流和谐波电压的出现,对公用电网是一种污染,它使用电设备所处的环境恶化,也对周围的用电设备造成影响。电力电子设备广泛应用以前,人们对谐波及其危害就进行过一些研究,并有一定认识,但那时谐波污染还没有引起足够的重视。近三四十年来,各种电力电子装置的迅速发展使得公用电网的谐波污染日趋严重,由谐波引起的各种故障和事故也不断发生,谐波危害的严重性才引起人们高度的关注。谐波对公用电网和其他系统的危害大致有以下几个方面。
(1)谐波使公用电网中的元件产生了附加的谐波损耗,降低了发电、输电及用电设备的效率,大量的3次谐波流过中性线时会使线路过热甚至发生火灾。
(2)谐波影响各种电气设备的正常工作。 谐波对电机的影响除引起附加损耗外,还会产生机械振动、噪声和过电压,使变压器局部严重过热。谐波使电容器、电缆等设备过热、绝缘老化、寿命缩短,以至损坏。
(3)谐波会引起公用电网中局部的并联谐振和串联谐振,从而使谐波放大,这就使上述(1)和(2)的危害大大增加,甚至引起严重事故。
(4)谐波会导致继电保护和自动装置的误动作,并会使电气测量仪表计量不准确。
(5)谐波会对邻近的通信系统产生干扰,轻者产生噪声,降低通信质量;重者导致住处丢失,使通信系统无法正常工作。 谐波简单地说,就是一定频率的电压或电流作用于非线性负载时,会产生不同于原频率的其它频率的正弦电压或电流的现象。
纹波是指在直流电压或电流中,叠加在直流稳定量上的交流分量。
它们虽然在概念上不是一回事,但它们之间有联系。如电源上附加的纹波在用电器上很容易产生各频率的谐波;电源中各频率谐波的存在无疑导致电源中纹波成分的增加。
除了在电路中我们所需要产生谐波的情况以外,它主要有以下主要危害:
1、使电网中发生谐振而造成过电流或过电压而引发事故;
2、增加附加损耗,降低发电、输电及用电设备的效率和设备利用率;
3、使电气设备(如旋转电机、电容器、变压器等)运行不正常,加速绝缘老化,从而缩短它们的使用寿命;
4、使继电保护、自动装置、计算机系统及许多用电设备运转不正常或不能正常动作或操作;
5、使测量和计量仪器、仪表不能正确指示或计量;
6、干扰通信系统,降低信号的传输质量,破坏信号的正常传递,甚至损坏通信设备。
纹波的害处:
1、容易在用电器上产生谐波,而谐波会产生较多的危害;
2、降低了电源的效率;
3、较强的纹波会造成浪涌电压或电流的产生,导致烧毁用电器;
4、会干扰数字电路的逻辑关系,影响其正常工作;
5、会带来噪音干扰,使图像设备、音响设备不能正常工作。
总之,它们在我们不需要的地方出现都是有害的,需要我们避免的。对于如何抑制和去除谐波和纹波的方式方法有很多,但想完全消除,似乎是很难办到的,我们只有将其控制在一个允许的范围之内,不对环境和设备产生影响就算达到了我们的目的。
电力网中非线性负载的逐渐增加是全世界共同的趋势,如变频驱动或晶闸管整流直流驱动设备、计算机、重要负载所用的不间断电源(UPS) 、节能荧光灯系统等,这些非线性负载将导致电网污染,电力品质下降,引起供用电设备故障, 甚至引发严重火灾事故等。
电力污染及电力品质恶化主要表现在以下方面:电压波动、浪涌冲击、谐 波、三相不平衡等。
1.电源 污染的危害
电源污染会对用电设备造成严重危害,主要有:
干扰通讯设备、计算机系统等电子设备的正常工作,造成数据丢失或死机。
影响无线电发射系统、雷达系统、核磁共振等设备的工作性能, 造成噪声干扰和图像紊乱。
引起电气自动装置误动作,甚至发生严重事故。
使电气设备过热,振动和噪声加大,加速绝缘老化,使用寿命缩短,甚至发生故障或烧毁。
造成灯光亮度的波动(闪变),影响工作效益。
导致供电系统功率损耗增加。 电压波动及闪变
电压波动是指多个正弦波的峰值,在一段时间内超过(低于)标准电压值,大约从半周波到几百个周波,即从10MS到2.5秒, 包括过压波动和欠压波动。普通避雷器和过电压保护器,完全不能消除过压波动,因为它们是用来消除瞬态脉冲的。普通避雷器在限压动作时有相当大的电阻值,考虑到其额定热容量(焦尔),这些装置很容易被烧毁,而无法提供以后的保护功能。这种情况往往很容易忽视掉,这是导致计算机、控制系统和敏感设备故障或停机的主要原因。
另一个相反的情况是欠压波动,它是指多个正弦波的峰值,在一段时间内低于标准电压值,或如通常所说:晃动或降落。长时间的低电压情况可能是由供电公司造成或由于用户过负载造成,这种情况可能是事故现象或计划安排。更为严重的是失压,它大多是由于配电网内重负载的分合造成,例如大型电动机、中央空调系统、电弧炉等的启停以及开关电弧、保险丝烧断、断路器跳闸等,这些都是通常导致电压畸变的原因。
大型用电设备的频繁启动导致电压的周期性波动,如电焊机、冲压机、吊机、电梯等,这些设备需要短时冲击功率,主要是无功功率。电压波动导致设备功率不稳,产品质量下降;灯光的闪变引致眼睛疲劳,降低工作效率。
浪涌冲击
浪涌冲击是指系统发生短时过(低)电压,即时间不超过1毫秒的电压瞬时脉冲,这种脉冲可以是正极性或负极性,可以具有连串或振荡性质。它们通常也被叫作:尖峰、缺口、干扰、毛刺或突变。
电网中的浪涌冲击既可由电网内部大型设备(电机、电容器等)的投切或大型晶闸管的开断引起,也可由外部雷电波的侵入造成。浪涌冲击容易引起电子设备部件损坏,引起电气设备绝缘击穿;同时也容易导致计算机等设备数据出错或死机。
谐波
线性负载,例如纯电阻负载,其工作电流的波形与输入电压的正弦波形完全相同,非线性负载,例如斩波直流负载,其工作电流是非正弦波形。传统的线性负载的电流/电压只含有基波(50Hz),没有或只有极小的谐波成分,而非线性负载会在电力系统中产生可观的谐波。
谐波与电力系统中基波叠加,造成波形的畸变,畸变的程度取决于谐波电流的频率和幅值。非线性负载产生陡峭的脉冲型电流,而不是平滑的正弦波电流,这种脉冲中的谐波电流引起电网电压畸变,形成谐波分量,进而导致与电网相联的其它负载产生更多的谐波电流。
计算机是此类非线性负载之一,象绝大多数办公室电子设备一样,计算机装有一个二极管/电容型的供电电源,这类供电电源仅在交流正弦波电压的峰值处产生电流,因此产生大量的三次谐波电流(150Hz)。其它产生谐波电流的设备主要有:电动机变频调速器,固态加热器,和其他一些产生非正弦波变化电流的设备。
荧光灯照明系统也是一个重要的谐波源,在普通的电磁整流器灯光电路中,三次谐波的典型值约为基波(50Hz)值的13%-20%。而在电子整流器灯光电路中,谐波分量甚至高达80%。
非线性负载所产生的谐波电流会影响电力系统的多个工作环节,包括变压器,中性线,还有电动机,发电机和电容器等。谐波电流会导致变压器,电动机和备用发电机的运行温度(K参数)严重升高。中性线上的过电流(由谐波和不平衡引起)不仅会使导线温度升高,造成绝缘损坏,而且会在三相变压器线圈中产生环流,导致变压器过热。无功补偿电容器会因电网电压谐波畸变而产生过热,谐波将导致严重过流;
另外,电容器还会与电力系统中的电感性元件形成谐振电路,这将导致电容器两端的电压明显升高,引致严重故障。照明装置的启辉电容器对于由高频电流引起的过热也是十分敏感的,启辉电容器的频繁损坏显示了电网中存在谐波的影响。谐波还会引起配电线路的传输效率下降,损耗增大,并干扰电力载波通讯系统的工作,如电能管理系统(EMS)和时钟系统。而且,谐波还会使电力测量表计,有功需量表和电度表的计量误差增大。
三相不平衡
三相不平衡会在中性线上产生过电流(由谐波和不平衡引起)不仅会使导线温度升高,甚至引发严重火灾事故等。
电网中三相间的不平衡电流是普遍存在的,在城市民用电网及农用电网中由于大量单相负荷的存在,三相间的电流不平衡现象尤为严重。对于三相不平衡电流,除了尽量合理地分配负荷之外几乎没有什么行之有效的解决办法。正因为找不到解决问题的有效办法,因此反而不被人们所重视,也很少有人进行研究。
电网中的不平衡电流会增加线路及变压器的铜损,增加变压器的铁损,降低变压器的出力甚至会影响变压器的安全运行,会造成三相电压不平衡因而降低供电质量
,甚至会影响电能表的精度而造成计量损失。
理论研究证明:在输出同样功率的情况下,三相电流平衡时变压器及线路的铜损最小,也就是说:三相不平衡现象增加了变压器及线路的铜损。
不平衡电流对系统铜损的影响
设某系统的三相线路及变压器绕组的总电阻为R。如果三相电流平衡,IA=100A,IB=100A,IC=100A,则总铜损=1002R+1002R+1002R=30000R。
如果三相电流不平衡,IA=50A,IB=100A,IC=150A,则总铜损=502R+1002R+1502R=35000R,比平衡状态的铜损增加了17%。
在更为严重的状态下,如果IA=0A,IB=150A,IC=150A,则总铜损=1502R+1502R=45000R,比平衡状态的铜损增加了50%。
在最严重的状态下,如果IA=0A,IB=0A,IC=300A,则总铜损=3002R=90000R,比平衡状态的铜损增加了3倍。
不平衡电流对变压器的影响
现有的10/0.4KV的低压配电变压器多为Yyn0接法三相三柱铁心的变压器。这种类型的变压器,当二次侧负荷不平衡且有零线电流时,零线电流即为零序电流,而在
一次侧由于无中点引出线因此零序电流无法流通,故零序电流不能安匝平衡,对铁心而言,有一个激磁零序电流,它受零序激磁阻抗控制,根据磁路的设计,这一零序
激磁阻抗较大,零序电流使相电压的对称受到影响,中性点会偏移。由计算得知,当零线电流为额定电流的25%时,中性点移位约为额定电压的7%。国家标准GB50052-
95第6.08条规定: “当选用Yyn0结线组别的三相变压器,其由单相不平衡负荷引起的电流不得超过低压绕组额定电流的25%,且其中一相的电流在满载时不得超过额定电
流值。”由于上述规定,限制了Yyn0结线配电变压器接用单相负荷的容量,也影响了变压器设备能力的充分利用。
并且,对三相三柱的磁路而言,零序磁通不能在磁路内成回路,必须在油箱壁及紧固件内形成回路,而油箱壁及紧固件内的磁通会产生较大的涡流损耗,因而使变
压器的铁损增加。当零序电流过大导致零序磁通过大时,由于中性点漂移过大会引起某些相电压过高而导致铁心磁饱和,使铁损急剧增加,加上紧固件过热等因素,可
能会发生任何一相电流均未过载而变压器却因局部过热而损坏的事故。
由于Yyn0结线组的配电变压器与的零序激磁阻抗较大,因此零线电流会造成较大的电压变化,形成比较严重的三相电压不平衡现象,不但影响单相用户,对三相用
户的影响更大 。
三相负荷不平衡的危害
对配电变压器的影响
(1)三相负荷不平衡将增加变压器的损耗:
变压器的损耗包括空载损耗和负荷损耗。正常情况下变压器运行电压基本不变,即空载损耗是一个恒量。而负荷损耗则随变压器运行负荷的变化而变化,且与负荷电流的平方成正比。当三相负荷不平衡运行时,变压器的负荷损耗可看成三只单相变压器的负荷损耗之和。
从数学定理中我们知道:假设a、b、c 3个数都大于或等于零,那么a+b+c≥33√abc 。
当a=b=c时,代数和a+b+c取得最小值:a+b+c=33√abc 。
因此我们可以假设变压器的三相损耗分别为:Qa=Ia2 R、Qb= Ib2 R 、Qc =Ic2 R,式中Ia、Ib、Ic分别为变压器二次负荷相电流,R为变压器的相电阻。则变压器的损耗表达式如下:
Qa+Qb+Qc≥33√〔(Ia2 R)(Ib2 R)(Ic2 R)〕
由此可知,变压器的在负荷不变的情况下,当Ia=Ib=Ic时,即三相负荷达到平衡时,变压器的损耗最小。
则变压器损耗:
当变压器三相平衡运行时,即Ia=Ib=Ic=I时,Qa+Qb+Qc=3I2R;
当变压器运行在最大不平衡时,即Ia=3I,Ib=Ic=0时,Qa=(3I)2R=9I2R=3(3I2R);
即最大不平衡时的变损是平衡时的3倍。
(2)三相负荷不平衡可能造成烧毁变压器的严重后果:
上述不平衡时重负荷相电流过大(增为3倍),超载过多,可能造成绕组和变压器油的过热。绕组过热,绝缘老化加快;变压器油过热,引起油质劣化,迅速降低变压器的绝缘性能,减少变压器寿命(温度每升高8℃,使用年限将减少一半),甚至烧毁绕组。
(3)三相负荷不平衡运行会造成变压器零序电流过大,局部金属件温升增高:
在三相负荷不平衡运行下的变压器,必然会产生零序电流,而变压器内部零序电流的存在,会在铁芯中产生零序磁通,这些零序磁通就会在变压器的油箱壁或其他金属构件中构成回路。但配电变压器设计时不考虑这些金属构件为导磁部件,则由此引起的磁滞和涡流损耗使这些部件发热,致使变压器局部金属件温度异常升高,严重时将导致变压器运行事故。
3.2 对高压线路的影响
(1)增加高压线路损耗:
低压侧三相负荷平衡时,6~10k V高压侧也平衡,设高压线路每相的电流为I,其功率损耗为: ΔP1 = 3I2R
低压电网三相负荷不平衡将反映到高压侧,在最大不平衡时,高压对应相为1.5I,另外两相都为0.75 I,功率损耗为:
ΔP2 = 2(0.75I)2R+(1.5I)2R = 3.375I2R =1.125(3I2R);
即高压线路上电能损耗增加12.5%。
(2)增加高压线路跳闸次数、降低开关设备使用寿命:
我们知道高压线路过流故障占相当比例,其原因是电流过大。低压电网三相负荷不平衡可能引起高压某相电流过大,从而引起高压线路过流跳闸停电,引发大面积停电事故,同时变电站的开关设备频繁跳闸将降低使用寿命。
3.3 对配电屏和低压线路的影响
(1)三相负荷不平衡将增加线路损耗:
三相四线制供电线路,把负荷平均分配到三相上,设每相的电流为I,中性线电流为零,其功率损耗为: ΔP1 = 3I2R
在最大不平衡时,即某相为3I,另外两相为零,中性线电流也为3I,功率损耗为:
ΔP2 = 2(3I)2R = 18I2R = 6(3I2R);
即最大不平衡时的电能损耗是平衡时的6倍,换句话说,若最大不平衡时每月损失1200 kWh,则平衡时只损失200 kWh,由此可知调整三相负荷的降损潜力。
(2)三相负荷不平衡可能造成烧断线路、烧毁开关设备的严重后果:
上述不平衡时重负荷相电流过大(增为3倍),超载过多。由于发热量Q=0.24I2Rt,电流增为3倍,则发热量增为9倍,可能造成该相导线温度直线上升,以致烧断。且由于中性线导线截面一般应是相线截面的50%,但在选择时,有的往往偏小,加上接头质量不好,使导线电阻增大。中性线烧断的几率更高。
同理在配电屏上,造成开关重负荷相烧坏、接触器重负荷相烧坏,因而整机损坏等严重后果。
3.4 对供电企业的影响
供电企业直管到户,低压电网损耗大,将降低供电企业的经济效益,甚至造成供电企业亏损经营。农电工承包台区线损,线损高农电工奖金被扣发,甚至连工资也得不到,必然影响农电工情绪,轻则工作消极,重则为了得到钱违法犯罪。
变压器烧毁、线路烧断、开关设备烧坏,一方面增大供电企业的供电成本,另一方面停电检修、购货更换造成长时间停电,少供电量,既降低供电企业的经济效益,又影响供电企业的声誉。
3.5 对用户的影响
三相负荷不平衡,一相或两相畸重,必将增大线路中的电压降,降低电能质量,影响用户的电器使用。
变压器烧毁、线路烧断、开关设备烧坏,影响用户供电,轻则带来不便,重则造成较大的经济损失,如停电造成养殖的动植物死亡,或不能按合同供货被惩罚等。中性线烧断还可能造成用户大量低压电器被烧毁的事故。
一:NTP是网络时间同步协议,就是用来同步网络中各个计算机的时间的协议。
二:NTP服务端配置
2.1、检查系统是否安装了NTP包(linux系统一般自带NTP4.2),没有安装我们直接使用yum命令在线安装: yum install ntp
2.2、NTP服务端配置文件编辑: vim /etc/ntp.conf
结果:
# @3新增-权限配置restrict 127.127.1.0restrict 192.168.31.0 mask 255.255.255.0 nomodify notrap# @3改动-注释掉上级时间服务器地址#server 0.centos.pool.ntp.org iburst#server 1.centos.pool.ntp.org iburst#server 2.centos.pool.ntp.org iburst#server 3.centos.pool.ntp.org iburst# @4新增-上级时间服务器server 127.127.1.0 # local clockfudge 127.127.1.0 stratum 10
2.3、启动NTP时间服务器:service ntpd start
2.4、设置NTP开机自动启动:chkconfig ntpd on
2.5、查看NTP是否正常运行:netstat -tlunp | grep ntp
2.6、配置防火墙过滤规则:/sbin/iptables -I INPUT -p udp --dport 123 -j ACCEPT
如何配置:/etc/sysconfig/iptables 文件内配置开放udp 123端口: -A INPUT -p udp --destination-port 123 -j ACCEPT
A.服务端配置文件解释
①:设定NTP主机来源(其中prefer表示优先主机),192.168.31.134是本地的NTP服务器,所以优先指定从该主机同步时间。
server 192.168.7.49 prefer
server 0.rhel.pool.ntp.org
server 1.rhel.pool.ntp.org
server 2.rhel.pool.ntp.org
server 3.rhel.pool.ntp.org
②:限制你允许的这些服务器的访问类型,在这个例子中的服务器是不容许修改运行时配置或查询您的Linux NTP服务器
restrict 192.168.0.0 mask 255.255.255.0 notrust nomodify notrap
在上例中,掩码地址扩展为255,因此从192.168.0.1-192.168.0.254的服务器都可以使用我们的NTP服务器来同步时间
#此时表示限制向从192.168.0.1-192.168.0.254这些IP段的服务器提供NTP服务。
restrict 192.168.0.0 mask 255.255.255.0 notrust nomodify notrap noquery
#设置默认策略为允许任何主机进行时间同步
restrict default ignore
三:NTP客户端配置3.1、检查安装NTP服务有没有安装,未安装请自行安装
3.2、NTP客户端配置文件编辑: vim /etc/ntp.conf
# @1新增-权限配置restrict 192.168.31.0 mask 255.255.255.0 nomodify notrap# Use public servers from the pool.ntp.org project.# Please consider joining the pool (http://www.pool.ntp.org/join.html).# 注释掉原来的实际服务器地址#server 0.centos.pool.ntp.org iburst#server 1.centos.pool.ntp.org iburst#server 2.centos.pool.ntp.org iburst#server 3.centos.pool.ntp.org iburst# @2新增-自己的时间服务器地址server 192.168.31.223 prefer <==以这部主机为最优先#broadcast 192.168.1.255 autokey # broadcast server#broadcastclient # broadcast client#broadcast 224.0.1.1 autokey # multicast server#multicastclient 224.0.1.1 # multicast client#manycastserver 239.255.254.254 # manycast server#manycastclient 239.255.254.254 autokey # manycast client
3.3、手动同步一次时间:/usr/sbin/ntpdate192.168.31.134 (服务端主机IP,这里需要先关闭NTP服务哦)
3.4、启动NTP服务:service ntpd start
3.5、观察时间同步状况:ntpq -p
结果:
[root@localhost hct]# ntpq -p remote refid st t when poll reach delay offset jitter==============================================================================*192.168.31.134 LOCAL(0) 11 u 64 128 377 0.202 73.980 412.834
⑥查看时间同步结果:ntpstat
[root@hct ~]# ntpstat
unsynchronised
polling server every 8 s
同步失败,同步也需要时间,需等待5-10分钟再次查询:
Every 2.0s: ntpstat Tue Jul 11 16:55:57 2017synchronised to NTP server (10.10.11.247) at stratum 12 time correct to within 605 ms polling server every 128 s
时间同步完成,date一下看是不是和服务器主机时间一致
B.客户端配置文件详解
修改/etc/ntp/stpe-tickers文件,内容如下(当ntpd服务启动时,会自动与该文件中记录的上层NTP服务进行时间校对
C.系统时间与硬件时间同步
如果主从服务时间超过1000秒则不再进行同步了,这时候要手动同步,即:/usr/sbin/ntpdate命令,如果怕服务器时差会经常变动比较大可以再Linux中添加计划任务,例如:
10 5 * * * root /usr/sbin/ntpdate 192.168.31.223 &&/sbin/hwclock -w
ntp服务,默认只会同步系统时间。如果想要让ntp同时同步硬件时间,可以设置/etc/sysconfig/ntpd文件,在/etc/sysconfig/ntpd文件中,添加 SYNC_HWCLOCK=yes 这样,就可以让硬件时间与系统时间一起同步。
拓展内容ntpq -p各个选项相关信息
restrict 控制相关权限。
语法为: restrict IP地址 mask 子网掩码 参数
其中IP地址也可以是default ,default 就是指所有的IP
参数有以下几个:
ignore :关闭所有的 NTP 联机服务
nomodify:客户端不能更改服务端的时间参数,但是客户端可以通过服务端进行网络校时。
notrust :客户端除非通过认证,否则该客户端来源将被视为不信任子网
noquery :不提供客户端的时间查询:用户端不能使用ntpq,ntpc等命令来查询ntp服务器
notrap :不提供trap远端登陆:拒绝为匹配的主机提供模式 6 控制消息陷阱服务。陷阱服务是 ntpdq 控制消息协议的子系统,用于远程事件日志记录程序。
nopeer :用于阻止主机尝试与服务器对等,并允许欺诈性服务器控制时钟
kod : 访问违规时发送 KoD 包。
restrict -6 表示IPV6地址的权限设置。
root@www ~]# vim /etc/ntp.conf# 1. 先处理权限方面的问题,包括放行上层伺服器以及开放区网用户来源:restrict default kod nomodify notrap nopeer noquery <==拒绝 IPv4 的用户restrict -6 default kod nomodify notrap nopeer noquery <==拒绝 IPv6 的用户restrict 220.130.158.71 <==放行 tock.stdtime.gov.tw 进入本 NTP 伺服器restrict 59.124.196.83 <==放行 tick.stdtime.gov.tw 进入本 NTP 伺服器restrict 59.124.196.84 <==放行 time.stdtime.gov.tw 进入本 NTP 伺服器restrict 127.0.0.1 <==底下两个是预设值,放行本机来源restrict -6 ::1restrict 192.168.100.0 mask 255.255.255.0 nomodify <==放行区网来源# 2. 设定主机来源,请先将原本的 [0|1|2].centos.pool.ntp.org 的设定注解掉:server 220.130.158.71 prefer <==以这部主机为最优先server 59.124.196.83server 59.124.196.84# 3.预设时间差异分析档案与暂不用到的 keys 等,不需要更动它:driftfile /var/lib/ntp/driftkeys /etc/ntp/keys
ntpd、ntpdate的区别
下面是网上关于ntpd与ntpdate区别的相关资料。如下所示所示:
使用之前得弄清楚一个问题,ntpd与ntpdate在更新时间时有什么区别。ntpd不仅仅是时间同步服务器,它还可以做客户端与标准时间服务器进行同步时间,而且是平滑同步,并非ntpdate立即同步,在生产环境中慎用ntpdate,也正如此两者不可同时运行。
时钟的跃变,对于某些程序会导致很严重的问题。许多应用程序依赖连续的时钟——毕竟,这是一项常见的假定,即,取得的时间是线性的,一些操作,例如数据库事务,通常会地依赖这样的事实:时间不会往回跳跃。不幸的是,ntpdate调整时间的方式就是我们所说的”跃变“:在获得一个时间之后,ntpdate使用settimeofday(2)设置系统时间,这有几个非常明显的问题:
第一,这样做不安全。ntpdate的设置依赖于ntp服务器的安全性,攻击者可以利用一些软件设计上的缺陷,拿下ntp服务器并令与其同步的服务器执行某些消耗性的任务。由于ntpdate采用的方式是跳变,跟随它的服务器无法知道是否发生了异常(时间不一样的时候,唯一的办法是以服务器为准)。
第二,这样做不精确。一旦ntp服务器宕机,跟随它的服务器也就会无法同步时间。与此不同,ntpd不仅能够校准计算机的时间,而且能够校准计算机的时钟。
第三,这样做不够优雅。由于是跳变,而不是使时间变快或变慢,依赖时序的程序会出错(例如,如果ntpdate发现你的时间快了,则可能会经历两个相同的时刻,对某些应用而言,这是致命的)。因而,唯一一个可以令时间发生跳变的点,是计算机刚刚启动,但还没有启动很多服务的那个时候。其余的时候,理想的做法是使用ntpd来校准时钟,而不是调整计算机时钟上的时间。
NTPD 在和时间服务器的同步过程中,会把 BIOS 计时器的振荡频率偏差——或者说 Local Clock 的自然漂移(drift)——记录下来。这样即使网络有问题,本机仍然能维持一个相当精确的走时。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)