主要是看运行什么软件和数据量,训练数值大小,这里要强调一下,数值大小和数据量是不一样的。
深度学习服务器的核心部件还是CPU、硬盘、内存、GPU,特别是很多深度学习依靠GPU的大规模数据处理能力,这就要强调CPU的计算能力和数量,同时不同的数据对GPU的显存要求也不一样。
当下大部分都在用RTX3090做深度学习,最新RTX4090已经上市,单精度计算能力是RTX3090的2倍,这两个GPU都是24G显存;像A100强调双精度计算能力,显存有40G和80G两个版本,而A6000单精度计算能和RTX3090差不多,显存是48G,可以参考选择。
当然,最重要的还是口袋里的银子,A6000市场价大概是RTX的2倍还要多,A100最近更是要上十万了,估计也快买不到了,价高缺货;RTX3090/4090的价位低,性价比高,这也是为什么大部分人都选择它们做深度学习了,这是市场的选择。
1+1电源配置;2+1电源配置;2+2电源配置。要看该服务器最多可以接驳几个电源模块,该服务器的用途和重要程度。对于重要的且不宜停机检修的服务器,在资金允许的情况下,应该配足冗余电源。具有冗余电源模块的服务器,当其中一个电源模块发生故障时,冗余电源会立即投入运行,同时主板蜂鸣器会发出报警声。服务器是一种高性能计算机,它是网络的节点,主要用来存储、处理网络上80%的数据、信息,因此也被称为网络的灵魂。服务器的构成包括处理器、硬盘、内存、系统总线等,和通用的计算机架构类似,但是由于需要提供高可靠的服务,因此在各方面的要求都比较高。服务器就像是邮局的交换机,而微机、笔记本、PDA、手机等固定或移动的网络终端,就如散落在家庭、各种办公场所、公共场所等处的电话机。我们与外界日常的生活、工作中的电话交流、沟通,必须经过交换机,才能到达目标电话。同样如此,网络终端设备如家庭、企业中的微机上网,获取资讯,与外界沟通、娱乐等,也必须经过服务器。
选服务器的话可以选择亿万克服务器,性价比高,算力强:业界最先进的X86平台,搭载最强悍的算力引擎,业界国内领先!延时低:自主独有存储管理软件,轻松处理各种并发热数据,业界国内领先!
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)