在计算机编程中,一个基本的概念就是同时对多个任务加以控制。许多程序设计问题都要求程序能够停下手头的工作,改为处理其他一些问题,再返回主进程。可以通过多种途径达到这个目的。最开始的时候,那些掌握机器低级语言的程序员编写一些“中断服务例程”,主进程的暂停是通过硬件级的中断实现的。尽管这是一种有用的方法,但编出的程序很难移植,由此造成了另一类的代价高昂问题。中断对那些实时性很强的任务来说是很有必要的。但对于其他许多问题,只要求将问题划分进入独立运行的程序片断中,使整个程序能更迅速地响应用户的请求。
最开始,线程只是用于分配单个处理器的处理时间的一种工具。但假如操作系统本身支持多个处理器,那么每个线程都可分配给一个不同的处理器,真正进入“并行运算”状态。从程序设计语言的角度看,多线程操作最有价值的特性之一就是程序员不必关心到底使用了多少个处理器。程序在逻辑意义上被分割为数个线程;假如机器本身安装了多个处理器,那么程序会运行得更快,毋需作出任何特殊的调校。根据前面的论述,大家可能感觉线程处理非常简单。但必须注意一个问题:共享资源!如果有多个线程同时运行,而且它们试图访问相同的资源,就会遇到一个问题。举个例子来说,两个线程不能将信息同时发送给一台打印机。为解决这个问题,对那些可共享的资源来说(比如打印机),它们在使用期间必须进入锁定状态。所以一个线程可将资源锁定,在完成了它的任务后,再解开(释放)这个锁,使其他线程可以接着使用同样的资源。
多线程是为了同步完成多项任务,不是为了提高运行效率,而是为了提高资源使用效率来提高系统的效率。线程是在同一时间需要完成多项任务的时候实现的。
多线程技术可以提高cpu利用率,尤其是多核cpu的机器,提高并发执行效率。这是建立在cpu执行有空余的情况下的,多线程也并非没有代价,首先线程作为操作系统的最小调度单位也是要占用内存空间的,其次线程调度及上下文切换也会消耗性能。一般线程数为cpu个数*2+1较好,线程太多会占用内存,频繁的线程上下文切换也会导致效率降低。线程在程序中是独立的、并发的执行流。与分隔的进程相比,进程中线程之间的隔离程度要小,它们共享内存、文件句柄和其他进程应有的状态。
因为线程的划分尺度小于进程,使得多线程程序的并发性高。进程在执行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序的运行效率。
线程比进程具有更高的性能,这是由于同一个进程中的线程都有共性多个线程共享同一个进程的虚拟空间。线程共享的环境包括进程代码段、进程的公有数据等,利用这些共享的数据,线程之间很容易实现通信。
操作系统在创建进程时,必须为该进程分配独立的内存空间,并分配大量的相关资源,但创建线程则简单得多。因此,使用多线程来实现并发比使用多进程的性能要高得多。
总结起来,使用多线程编程具有如下几个优点:
进程之间不能共享内存,但线程之间共享内存非常容易。
操作系统在创建进程时,需要为该进程重新分配系统资源,但创建线程的代价则小得多。因此,使用多线程来实现多任务并发执行比使用多进程的效率高。
Python 语言内置了多线程功能支持,而不是单纯地作为底层操作系统的调度方式,从而简化了 Python 的多线程编程。
在实际应用中,多线程是非常有用的。比如一个浏览器必须能同时下载多张图片;一个 Web 服务器必须能同时响应多个用户请求;图形用户界面(GUI)应用也需要启动单独的线程,从主机环境中收集用户界面事件……总之,多线程在实际编程中的应用是非常广泛的。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)