SEM、TEM、XRD、AES、STM、AFM的区别主要是名称不同、工作原理不同、作用不同、
一、名称不同
1、SEM,英文全称:Scanningelectronmicroscope,中文称:扫描电子显微镜。
2、TEM,英文全称:TransmissionElectronMicroscope,中文称:透射电子显微镜。
3、XRD,英文全称:Diffractionofx-rays,中文称:X射线衍射。
4、AES,英文全称:AugerElectronSpectroscopy,中文称:俄歇电子能谱。
5、STM,英文全称:ScanningTunnelingMicroscope,中文称:扫描隧道显微镜。
6、AFM,英文全称:AtomicForceMicroscope,中文称:原子力显微镜。
二、工作原理不同
1.扫描电子显微镜的原理是用高能电子束对样品进行扫描,产生各种各样的物理信息。通过接收、放大和显示这些信息,可以观察到试样的表面形貌。
2.透射电子显微镜的整体工作原理如下:电子枪发出的电子束经过冷凝器在透镜的光轴在真空通道,通过冷凝器,它将收敛到一个薄,明亮而均匀的光斑,辐照样品室的样品。通过样品的电子束携带着样品内部的结构信息。通过样品致密部分的电子数量较少,而通过稀疏部分的电子数量较多。
物镜会聚焦点和一次放大后,电子束进入第二中间透镜和第一、第二投影透镜进行综合放大成像。最后,将放大后的电子图像投影到观察室的荧光屏上。屏幕将电子图像转换成可视图像供用户观察。
3、x射线衍射(XRD)的基本原理:当一束单色X射线入射晶体,因为水晶是由原子规则排列成一个细胞,规则的原子之间的距离和入射X射线波长具有相同的数量级,因此通过不同的原子散射X射线相互干涉,更影响一些特殊方向的X射线衍射,衍射线的位置和强度的空间分布,晶体结构密切相关。
4.入射的电子束和材料的作用可以激发原子内部的电子形成空穴。从填充孔到内壳层的转变所释放的能量可能以x射线的形式释放出来,产生特征性的x射线,也可能激发原子核外的另一个电子成为自由电子,即俄歇电子。
5.扫描隧道显微镜的工作原理非常简单。一个小电荷被放在探头上,电流从探头流出,穿过材料,到达下表面。当探针通过单个原子时,通过探针的电流发生变化,这些变化被记录下来。
电流在流经一个原子时涨落,从而非常详细地描绘出它的轮廓。经过多次流动后,人们可以通过绘制电流的波动得到构成网格的单个原子的美丽图画。
6.原子力显微镜的工作原理:当原子间的距离减小到一定程度时,原子间作用力迅速增大。因此,样品表面的高度可以直接由微探针的力转换而来,从而获得样品表面形貌的信息。
三、不同的功能
1.扫描电子显微镜(SEM)是介于透射电子显微镜和光学显微镜之间的一种微观形貌观察方法,可以直接利用样品表面材料的材料性质进行微观成像。
扫描电子显微镜具有高倍放大功能,可连续调节20000~200000倍。它有一个大的景深,一个大的视野,一个立体的形象,它可以直接观察到各种样品在不均匀表面上的细微结构。
样品制备很简单。目前,所有的扫描电镜设备都配备了x射线能谱仪,可以同时观察微观组织和形貌,分析微区成分。因此,它是当今非常有用的科学研究工具。
2.透射电子显微镜在材料科学和生物学中有着广泛的应用。由于电子容易散射或被物体吸收,穿透率低,样品的密度和厚度会影响最终成像质量。必须制备超薄的薄片,通常为50~100nm。
所以当你用透射电子显微镜观察样品时,你必须把它处理得很薄。常用的方法有:超薄切片法、冷冻超薄切片法、冷冻蚀刻法、冷冻断裂法等。对于液体样品,通常挂在预处理过的铜线上观察。
3X射线衍射检测的重要手段的人们意识到自然,探索自然,尤其是在凝聚态物理、材料科学、生活、医疗、化工、地质、矿物学、环境科学、考古学、历史、和许多其他领域发挥了积极作用,不断拓展新领域、新方法层出不穷。
特别是随着同步辐射源和自由电子激光的兴起,x射线衍射的研究方法还在不断扩展,如超高速x射线衍射、软x射线显微术、x射线吸收结构、共振非弹性x射线衍射、同步x射线层析显微术等。这些新的X射线衍射检测技术必将为各个学科注入新的活力。
4,俄歇电子在固体也经历了频繁的非弹性散射,可以逃避只是表面的固体表面原子层的俄歇电子,电子的能量通常是10~500电子伏特,他们的平均自由程很短,约5~20,所以俄歇电子能谱学调查是固体表面。
俄歇电子能谱通常采用电子束作为辐射源,可以进行聚焦和扫描。因此,俄歇电子能谱可用于表面微观分析,并可直接从屏幕上获得俄歇元素图像。它是现代固体表面研究的有力工具,广泛应用于各种材料的分析,催化、吸附、腐蚀、磨损等方面的研究。
5.当STM工作时,探头将足够接近样品,以产生具有高度和空间限制的电子束。因此,STM具有很高的空间分辨率,可以用于成像工作中的科学观测。
STM在加工的过程中进行了表面上可以实时成像进行了表面形态,用于查找各种结构性缺陷和表面损伤,表面沉积和蚀刻方法建立或切断电线,如消除缺陷,达到修复的目的,也可以用STM图像检查结果是好还是坏。
6.原子力显微镜的出现无疑促进了纳米技术的发展。扫描探针显微镜,以原子力显微镜为代表,是一系列的显微镜,使用一个小探针来扫描样品的表面,以提供高倍放大。Afm扫描可以提供各类样品的表面状态信息。
与传统显微镜相比,原子力显微镜观察样品的表面的优势高倍镜下在大气条件下,并且可以用于几乎所有样品(与某些表面光洁度要求)并可以获得样品表面的三维形貌图像没有任何其他的样品制备。
扫描后的三维形貌图像可进行粗糙度计算、厚度、步长、方框图或粒度分析。
pc材料上的膜用什么化工原料泡掉的快聚碳酸酯,又称PC,身居五大工程塑料之一,具有优异的透光性、抗冲击性、电绝缘性、耐候性等。在建材、汽车、电子、航天等行业有广泛的应用。然而,硬币的另一面, PC遇到有机小分子易溶胀、遇到碱性环境易水解、热环境可降解,这些均会导致PC零件、构件、部件的腐蚀、开裂等失效问题。影响产品质量、使用安全、甚至是商誉。
对PC零部件的失效原因做“解剖”,具有重要的工程、生产、商业价值。
pc塑料腐蚀分析思路
1.确定分析思路
2.思考解决方案
3设计、执行、完成分析实验
4.凝练分析结论
5. 给出优化建议
图1 某透明产品及其失效照片
确定pc塑料腐蚀分析思路
(1)“白色附着物”是“环境外来物”侵袭还是材料腐蚀的“产物”?
(2)“开裂处”是否有材料的降解、化学腐蚀、物质侵入?
(3)失效位置在空间上与橡胶密封圈或接触或邻近,是否相关,需要获取直接证据。
pc塑料腐蚀分析思考解决方案
(1)分析本案有关的正常PC材料、橡胶密封圈的成分,获得失效分析的基础对标数据。
(2) 分析“白色附着物”重点关注是否有PC的降解产物、是否有不属于3.1的全成分分析结果中的成分。
(3)开裂处电镜分析、物质微萃取分析,查阅开裂与3.1和3.2分析结果的关联。
(4)经过3.1-3.3的分析,针对性地排查橡胶密封圈中的化学物质在本案中的影响。
(5) 综合分析所得数据,对本失效案例做出科学的判断,以便客户在后续研发中避免这些风险因素。
设计、执行、完成pc塑料腐蚀分析实验
3.1 全成分分析获得PC材料、橡胶密封圈的成分,作为基础数据,如下表所示橡胶密封圈成分。
3.2 分析“白色附着物”和开裂位置
1)SEM-EDS:PC壳体失效处呈现了明显的材料腐蚀的形貌。
2)FTIR:壳体表面白色物质的红外谱图,除PC外,可见少量的双酚A及双酚A的盐。
3)NMR:壳体表面白色附着物的NMR谱图,除PC外,可见双酚A的特征出峰。
4)DSC:正常未老化的PC的Tg-onset为138℃,而老化后的白色物质的Tg-onset为43℃,提示分子量的显著降低。(谱图与对比谱图略)
5)TGA:~400℃前失重占比26.2%,400-430℃失重占比约10.3%,提示了白色物质中低分子PC和单体双酚A的热失重。(谱图与对比谱图略)
6)HS-GCMS:橡胶密封条为偶氮二异丁腈(AIBN)发泡的硅橡胶,产品中残留较高含量的发泡剂及发泡剂片段,其水浸泡液呈弱碱性(pH:8.79)。(谱图与对比谱图略)
pc塑料腐蚀分析结论
1)“白色附着物”为中发现了PC碱性条件下的水解生成的双酚A和双酚A盐。
2)接触的密封条为AIBN发泡的硅橡胶胶条,成品检测到明显的发泡剂及分解片段的残留,呈弱碱性。
3)残留发泡剂、分解或反应产物,在湿气条件下形成弱碱性环境,对PC造成致命性的腐蚀、降解、破坏。PC件力学性能发生大幅下降,在应力作用下出现开裂。
给出优化建议
本例中PC接触零件(发泡的硅橡胶密封圈)中残留的物质具有碱性,使PC发生了水解,产生了宏观的失效现象(出现白色附着物)、易开裂。本产品应主动地、优先地去除掉带有发泡剂残留的密封圈这个典型的不利因素。
通过对样品失效现象的微观探索,可以揭示失效的微观本质,这样可以有效指导生产实践。亦可用于区分清楚各方责任,例如产品设计部门在材料选型的责任,以及橡胶密封圈生产加工方的相关责任。
1、失效分析
失效分析-开裂
失效分析-变色
失效分析-脱漆
失效分析-粘接不良
失效分析-腐蚀
失效分析-轴承失效
失效分析-物理性能改变
失效分析-电学性能改变
失效分析-化学性能改变
汽车零部件失效分析
失效分析-材料合成/加工异常
断面分析及材料验证
断面分析
2、异物分析
异物分析-析出(不用对比正常位置)
异物分析-析出(对比正常位置)
异物分析-夹杂
异物分析-外来污染物
异物分析-工业产线异物
异物定性半定量分析
异物溯源
3、工业问题剖析
离子交换树脂的评价分析
特种材料金属评价(20-22个元素)
特种材料金属评价(60个元素)
验证评价
饮用纯水的物质评价
特种设备用纯水的物质评价
水异味物质分析
材料高温析出物/挥发物评价
材料高温高湿析出物/挥发物评价
材料合成/加工异常评价
电镀层的厚度与牢度有关,越厚牢度越差。化工原料没有用过,要是厚可以破皮后撕下来。
原子力显微镜:是一种利用原子,分子间的相互作用力来观察物体表面微观形貌的新型实验技术.它有一根纳米级的探针,被固定在可灵敏操控的微米级弹性悬臂上.当探针很靠近样品时,其顶端的原子与样品表面原子间的作用力会使悬臂弯曲,偏离原来的位置.根据扫描样品时探针的偏离量或振动频率重建三维图像.就能间接获得样品表面的形貌或原子成分.\x0d\x0a详细\x0d\x0a 图1. 激光检测原子力显微镜探针工作示意图\x0d\x0a原子力显微镜的基本原理是:将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,针尖与样品表面轻轻接触,由于针尖尖端原子与样品表面原子间存在极微弱的排斥力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样品的表面方向起伏运动。利用光学检测法或隧道电流检测法,可测得微悬臂对应于扫描各点的位置变化,从而可以获得样品表面形貌的信息。下面,我们以激光检测原子力显微镜(Atomic Force Microscope Employing Laser Beam Deflection for Force Detection,Laser-AFM)——扫描探针显微镜家族中最常用的一种为例,来详细说明其工作原理。 如图1所示,二极管激光器(Laser Diode)发出的激光束经过光学系统聚焦在微悬臂(Cantilever)背面,并从微悬臂背面反射到由光电二极管构成的光斑位置检测器(Detector)。在样品扫描时,由于样品表面的原子与微悬臂探针尖端的原子间的相互作用力,微悬臂将随样品表面形貌而弯曲起伏,反射光束也将随之偏移,因而,通过光电二极管检测光斑位置的变化,就能获得被测样品表面形貌的信息。 子力显微镜——原理图\x0d\x0a在系统检测成像全过程中,探针和被测样品间的距离始终保持在纳米(10e-9米)量级,距离太大不能获得样品表面的信息,距离太小会损伤探针和被测样品,反馈回路(Feedback)的作用就是在工作过程中,由探针得到探针-样品相互作用的强度,来改变加在样品扫描器垂直方向的电压,从而使样品伸缩,调节探针和被测样品间的距离,反过来控制探针-样品相互作用的强度,实现反馈控制。因此,反馈控制是本系统的核心工作机制。本系统采用数字反馈控制回路,用户在控制软件的参数工具栏通过以参考电流、积分增益和比例增益几个参数的设置来对该反馈回路的特性进行控制。\x0d\x0a编辑本段优缺点\x0d\x0a优点\x0d\x0a 原子力显微镜观察到的图像\x0d\x0a相对于扫描电子显微镜,原子力显微镜具有许多优点。不同于电子显微镜只能提供二维图像,AFM提供真正的三维表面图。同时,AFM不需要对样品的任何特殊处理,如镀铜或碳,这种处理对样品会造成不可逆转的伤害。第三,电子显微镜需要运行在高真空条件下,原子力显微镜在常压下甚至在液体环境下都可以良好工作。这样可以用来研究生物宏观分子,甚至活的生物组织。\x0d\x0a缺点\x0d\x0a和扫描电子显微镜(SEM)相比,AFM的缺点在于成像范围太小,速度慢,受探头的影响太大。原子力显微镜(Atomic Force Microscope)是继扫描隧道显微镜(Scanning Tunneling Microscope)之后发明的一种具有原子级高分辨的新型仪器,可以在大气和液体环境下对各种材料和样品进行纳米区域的物理性质包括形貌进行探测,或者直接进行纳米操纵;现已广泛应用于半导体、纳米功能材料、生物、化工、食品、医药研究和科研院所各种纳米相关学科的研究实验等领域中,成为纳米科学研究的基本工具。原子力显微镜与扫描隧道显微镜相比,由于能观测非导电样品,因此具有更为广泛的适用性。当前在科学研究和工业界广泛使用的扫描力显微镜(Scanning Force Microscope),其基础就是原子力显微镜。\x0d\x0a编辑本段仪器结构\x0d\x0a在原子力显微镜(Atomic Force Microscopy,AFM)的系统中,可分成三个部分:力检测部分、位置检测部分、反馈系统。\x0d\x0a力检测部分\x0d\x0a在原子力显微镜(AFM)的系统中,所要检测的力是原子与原子之间的范德华力。所以在本系统中是使用微小悬臂(cantilever)来检测原子之间力的变化量。微悬臂通常由一个一般100~500μm长和大约500nm~5μm厚的硅片或氮化硅片制成。微悬臂顶端有一个尖锐针尖,用来检测样品-针尖间的相互作用力。这微小悬臂有一定的规格,例如:长度、宽度、弹性系数以及针尖的形状,而这些规格的选择是依照样品的特性,以及操作模式的不同,而选择不同类型的探针。\x0d\x0a位置检测部分\x0d\x0a 原子力显微镜\x0d\x0a在原子力显微镜(AFM)的系统中,当针尖与样品之间有了交互作用之后,会使得悬臂cantilever摆动,所以当激光照射在微悬臂的末端时,其反射光的位置也会因为悬臂摆动而有所改变,这就造成偏移量的产生。在整个系统中是依靠激光光斑位置检测器将偏移量记录下并转换成电的信号,以供SPM控制器作信号处理。\x0d\x0a反馈系统\x0d\x0a在原子力显微镜(AFM)的系统中,将信号经由激光检测器取入之后,在反馈系统中会将此信号当作反馈信号,作为内部的调整信号,并驱使通常由压电陶瓷管制作的扫描器做适当的移动,以保持样品与针尖保持一定的作用力。\x0d\x0a总结\x0d\x0aAFM系统使用压电陶瓷管制作的扫描器精确控制微小的扫描移动。压电陶瓷是一种性能奇特的材料,当在压电陶瓷对称的两个端面加上电压时,压电陶瓷会按特定的方向伸长或缩短。而伸长或缩短的尺寸与所加的电压的大小成线性关系。也就是说,可以通过改变电压来控制压电陶瓷的微小伸缩。通常把三个分别代表X,Y,Z方向的压电陶瓷块组成三角架的形状,通过控制X,Y方向伸缩达到驱动探针在样品表面扫描的目的;通过控制Z方向压电陶瓷的伸缩达到控制探针与样品之间距离的目的欢迎分享,转载请注明来源:夏雨云
评论列表(0条)