负载均衡SLB

负载均衡SLB,第1张

在软件系统的架构设计中,对集群的负载均衡设计是作为高性能系统优化环节中必不可少的方案。负载均衡本质上是用于将用户流量进行均衡减压的,因此在互联网的大流量项目中,其重要性不言而喻。

早期的互联网应用,由于用户流量比较小,业务逻辑也比较简单,往往一个单服务器就能满足负载需求。随着现在互联网的流量越来越大,稍微好一点的系统,访问量就非常大了,并且系统功能也越来越复杂,那么单台服务器就算将性能优化得再好,也不能支撑这么大用户量的访问压力了,这个时候就需要使用多台机器,设计高性能的集群来应对。

那么,多台服务器是如何去均衡流量、如何组成高性能的集群的呢?

此时就需要请出 「负载均衡器」 入场了。

负载均衡(Load Balancer)是指把用户访问的流量,通过「负载均衡器」,根据某种转发的策略,均匀的分发到后端多台服务器上,后端的服务器可以独立的响应和处理请求,从而实现分散负载的效果。负载均衡技术提高了系统的服务能力,增强了应用的可用性。

目前市面上最常见的负载均衡技术方案主要有三种:

基于DNS负载均衡

基于硬件负载均衡

基于软件负载均衡

三种方案各有优劣,DNS负载均衡可以实现在地域上的流量均衡,硬件负载均衡主要用于大型服务器集群中的负载需求,而软件负载均衡大多是基于机器层面的流量均衡。在实际场景中,这三种是可以组合在一起使用。下面来详细讲讲:

基于DNS负载均衡

基于DNS来做负载均衡其实是一种最简单的实现方案,通过在DNS服务器上做一个简单配置即可。

其原理就是当用户访问域名的时候,会先向DNS服务器去解析域名对应的IP地址,这个时候我们可以让DNS服务器根据不同地理位置的用户返回不同的IP。比如南方的用户就返回我们在广州业务服务器的IP,北方的用户来访问的话,我就返回北京业务服务器所在的IP。

在这个模式下,用户就相当于实现了按照「就近原则」将请求分流了,既减轻了单个集群的负载压力,也提升了用户的访问速度。

使用DNS做负载均衡的方案,天然的优势就是配置简单,实现成本非常低,无需额外的开发和维护工作。

但是也有一个明显的缺点是:当配置修改后,生效不及时。这个是由于DNS的特性导致的,DNS一般会有多级缓存,所以当我们修改了DNS配置之后,由于缓存的原因,会导致IP变更不及时,从而影响负载均衡的效果。

另外,使用DNS做负载均衡的话,大多是基于地域或者干脆直接做IP轮询,没有更高级的路由策略,所以这也是DNS方案的局限所在。

基于硬件负载均衡

硬件的负载均衡那就比较牛逼了,比如大名鼎鼎的 F5 Network Big-IP,也就是我们常说的 F5,它是一个网络设备,你可以简单的理解成类似于网络交换机的东西,完全通过硬件来抗压力,性能是非常的好,每秒能处理的请求数达到百万级,即 几百万/秒 的负载,当然价格也就非常非常贵了,十几万到上百万人民币都有。

因为这类设备一般用在大型互联网公司的流量入口最前端,以及政府、国企等不缺钱企业会去使用。一般的中小公司是不舍得用的。

采用 F5 这类硬件做负载均衡的话,主要就是省心省事,买一台就搞定,性能强大,一般的业务不在话下。而且在负载均衡的算法方面还支持很多灵活的策略,同时还具有一些防火墙等安全功能。但是缺点也很明显,一个字:贵。

基于软件负载均衡

软件负载均衡是指使用软件的方式来分发和均衡流量。软件负载均衡,分为7层协议 和 4层协议。

网络协议有七层,基于第四层传输层来做流量分发的方案称为4层负载均衡,例如 LVS,而基于第七层应用层来做流量分发的称为7层负载均衡,例如 Nginx。这两种在性能和灵活性上是有些区别的。

基于4层的负载均衡性能要高一些,一般能达到 几十万/秒 的处理量,而基于7层的负载均衡处理量一般只在 几万/秒 。

基于软件的负载均衡的特点也很明显,便宜。在正常的服务器上部署即可,无需额外采购,就是投入一点技术去优化优化即可,因此这种方式是互联网公司中用得最多的一种方式。

上面讲完了常见的负载均衡技术方案,那么接下来咱们看一下,在实际方案应用中,一般可以使用哪些均衡算法?

轮询策略

负载度策略

响应策略

哈希策略

下面来分别介绍一下这几种均衡算法/策略的特点:

NO.1—— Random 随机

这是最简单的一种,使用随机数来决定转发到哪台机器上。

优点:简单使用,不需要额外的配置和算法。

缺点:随机数的特点是在数据量大到一定量时才能保证均衡,所以如果请求量有限的话,可能会达不到均衡负载的要求。

NO.2—— Round Robin 轮询

这个也很简单,请求到达后,依次转发,不偏不向。每个服务器的请求数量很平均。

缺点:当集群中服务器硬件配置不同、性能差别大时,无法区别对待。引出下面的算法。

NO.3—— Weighted Round Robin 加权轮询

这种算法的出现就是为了解决简单轮询策略中的不足。在实际项目中,经常会遇到这样的情况。

比如有5台机器,两台新买入的性能等各方面都特别好,剩下三台老古董。这时候我们设置一个权重,让新机器接收更多的请求。物尽其用、能者多劳嘛!

这种情况下,“均衡“就比较相对了,也没必要做到百分百的平均。

NO.4—— Least Connections 最少连接

这是最符合负载均衡算法的一个。需要记录每个应用服务器正在处理的连接数,然后将新来的请求转发到最少的那台上。

NO.5—— Source Hashing 源地址散列

根据请求的来源ip进行hash计算,然后对应到一个服务器上。之后所有来自这个ip的请求都由同一台服务器处理。

https://www.cnblogs.com/saixing/p/6730201.html

https://blog.51cto.com/13732225/2175804

一般用的就用简单的轮询就好了

调度算法

静态方法:仅根据算法本身实现调度;实现起点公平,不管服务器当前处理多少请求,分配的数量一致

动态方法:根据算法及后端RS当前的负载状况实现调度;不管以前分了多少,只看分配的结果是不是公平

静态调度算法(static Schedu)(4种):

(1)rr (Round Robin) :轮叫,轮询

说明:轮询调度算法的原理是每一次把来自用户的请求轮流分配给内部中的服务器,从1开始,直到N(内部服务器个数),然后重新开始循环。算法的优点是其简洁性,它无需记录当前所有连接的状态,所以它是一种无状态调度。缺点:是不考虑每台服务器的处理能力。

(2)wrr (Weight Round Robin) :加权轮询(以权重之间的比例实现在各主机之间进行调度)

说明:由于每台服务器的配置、安装的业务应用等不同,其处理能力会不一样。所以,我们根据服务器的不同处理能力,给每个服务器分配不同的权值,使其能够接受相应权值数的服务请求。

(3)sh (Source Hashing) : 源地址hash实现会话绑定sessionaffinity

说明:简单的说就是有将同一客户端的请求发给同一个real server,源地址散列调度算法正好与目标地址散列调度算法相反,它根据请求的源IP地址,作为散列键(Hash Key)从静态分配的散列表找出对应的服务器,若该服务器是可用的并且没有超负荷,将请求发送到该服务器,否则返回空。它采用的散列函数与目标地址散列调度算法的相同。它的算法流程与目标地址散列调度算法的基本相似,除了将请求的目标IP地址换成请求的源IP地址。

(4)dh : (Destination Hashing) : 目标地址hash

说明:将同样的请求发送给同一个server,一般用于缓存服务器,简单的说,LB集群后面又加了一层,在LB与realserver之间加了一层缓存服务器,当一个客户端请求一个页面时,LB发给cache1,当第二个客户端请求同样的页面时,LB还是发给cache1,这就是我们所说的,将同样的请求发给同一个server,来提高缓存的命中率。目标地址散列调度算法也是针对目标IP地址的负载均衡,它是一种静态映射算法,通过一个散列(Hash)函数将一个目标IP地址映射到一台服务器。目标地址散列调度算法先根据请求的目标IP地址,作为散列键(Hash Key)从静态分配的散列表找出对应的服务器,若该服务器是可用的且未超载,将请求发送到该服务器,否则返回空。

动态调度算法(dynamic Schedu)(6种):

(1)lc (Least-Connection Scheduling): 最少连接

说明:最少连接调度算法是把新的连接请求分配到当前连接数最小的服务器,最小连接调度是一种动态调度短算法,它通过服务器当前所活跃的连接数来估计服务器的负载均衡,调度器需要记录各个服务器已建立连接的数目,当一个请求被调度到某台服务器,其连接数加1,当连接中止或超时,其连接数减一,在系统实现时,我们也引入当服务器的权值为0时,表示该服务器不可用而不被调度。此算法忽略了服务器的性能问题,有的服务器性能好,有的服务器性能差,通过加权重来区分性能,所以有了下面算法wlc。

简单算法:active*256+inactive (谁的小,挑谁)

(2)wlc (Weighted Least-Connection Scheduling):加权最少连接

加权最小连接调度算法是最小连接调度的超集,各个服务器用相应的权值表示其处理性能。服务器的缺省权值为1,系统管理员可以动态地设置服务器的权限,加权最小连接调度在调度新连接时尽可能使服务器的已建立连接数和其权值成比例。由于服务器的性能不同,我们给性能相对好的服务器,加大权重,即会接收到更多的请求。

简单算法:(active*256+inactive)/weight(谁的小,挑谁)

(3)sed (shortest expected delay scheduling):最少期望延迟

说明:不考虑非活动连接,谁的权重大,我们优先选择权重大的服务器来接收请求,但会出现问题,就是权重比较大的服务器会很忙,但权重相对较小的服务器很闲,甚至会接收不到请求,所以便有了下面的算法nq。

基于wlc算法,简单算法:(active+1)*256/weight (谁的小选谁)

(4).nq (Never Queue Scheduling): 永不排队

说明:在上面我们说明了,由于某台服务器的权重较小,比较空闲,甚至接收不到请求,而权重大的服务器会很忙,所此算法是sed改进,就是说不管你的权重多大都会被分配到请求。简单说,无需队列,如果有台real server的连接数为0就直接分配过去,不需要在进行sed运算。

(5).LBLC(Locality-Based Least Connections) :基于局部性的最少连接

说明:基于局部性的最少连接算法是针对请求报文的目标IP地址的负载均衡调度,主要用于Cache集群系统,因为Cache集群中客户请求报文的目标IP地址是变化的,这里假设任何后端服务器都可以处理任何请求,算法的设计目标在服务器的负载基本平衡的情况下,将相同的目标IP地址的请求调度到同一个台服务器,来提高服务器的访问局部性和主存Cache命中率,从而调整整个集群系统的处理能力。

(6).LBLCR(Locality-Based Least Connections with Replication) :基于局部性的带复制功能的最少连接

说明:基于局部性的带复制功能的最少连接调度算法也是针对目标IP地址的负载均衡,该算法根据请求的目标IP地址找出该目标IP地 址对应的服务器组,按“最小连接”原则从服务器组中选出一台服务器,若服务器没有超载,将请求发送到该服务器;若服务器超载,则按“最小连接”原则从这个集群中选出一台服务器,将该服务器加入到服务器组中,将请求发送到该服务器。同时,当该服务器组有一段时间没有被修改,将最忙的服务器从服务器组中删除, 以降低复制的程度。

单机MySQL数据库的优化

一、服务器硬件对MySQL性能的影响

 

 ①磁盘寻道能力(磁盘I/O),我们现在上的都是SAS15000转的硬盘。MySQL每秒钟都在进行大量、复杂的查询操作,对磁盘的读写量可想而知。

所以,通常认为磁盘I/O是制约MySQL性能的最大因素之一,对于日均访

问量在100万PV以上的Discuz!论坛,由于磁盘I/O的制约,MySQL的性能会非常低下!解决这一制约因素可以考虑以下几种解决方案:

使用RAID1+0磁盘阵列,注意不要尝试使用RAID-5,MySQL在RAID-5磁盘阵列上的效率不会像你期待的那样快。

②CPU 对于MySQL应用,推荐使用DELL R710,E5620 @2.40GHz(4 core)* 2 ,我现在比较喜欢DELL R710,也在用其作Linuxakg 虚拟化应用;

③物理内存对于一台使用MySQL的Database Server来说,服务器内存建议不要小于2GB,推荐使用4GB以上的物理内存,不过内存对于现在的服务器而言可以说是一个可以忽略的问题,工作中遇到高端服务器基本上内存都超过了32G。

我们工作中用得比较多的数据库服务器是HP DL580G5和DELL R710,稳定性和性能都不错;特别是DELL R710,我发现许多同行都是采用它作数据库的服务器,所以重点推荐下。

 

 二、MySQL的线上安装我建议采取编译安装的方法,这样性能上有较大提升,服务器系统我建议用64bit的Centos5.5,源码包的编译参数会默

认以Debgu模式生成二进制代码,而Debug模式给MySQL带来的性能损失是比较大的,所以当我们编译准备安装的产品代码时,一定不要忘记使用“—

without-debug”参数禁用Debug模式。而如果把—with-mysqld-ldflags和—with-client-ldflags二

个编译参数设置为—all-static的话,可以告诉编译器以静态方式编译和编译结果代码得到最高的性能。使用静态编译和使用动态编译的代码相比,性能

差距可能会达到5%至10%之多。我参考了简朝阳先生的编译参数,特列如下,供大家参考

./configure

–prefix=/usr/local/mysql –without-debug –without-bench

–enable-thread-safe-client –enable-assembler –enable-profiling

–with-mysqld-ldflags=-all-static –with-client-ldflags=-all-static

–with-charset=latin1 –with-extra-charset=utf8,gbk –with-innodb

–with-csv-storage-engine –with-federated-storage-engine

–with-mysqld-user=mysql –without-我是怎么了ded-server

–with-server-suffix=-community

–with-unix-socket-path=/usr/local/mysql/sock/mysql.sock

三、MySQL自身因素当解决了上述服务器硬件制约因素后,让我们看看MySQL自身的优化是如何操作的。对 MySQL自身的优化主要是对其配置文件my.cnf中的各项参数进行优化调整。下面我们介绍一些对性能影响较大的参数。

下面,我们根据以上硬件配置结合一份已经优化好的my.cnf进行说明:

#vim /etc/my.cnf

以下只列出my.cnf文件中[mysqld]段落中的内容,其他段落内容对MySQL运行性能影响甚微,因而姑且忽略。

[mysqld]

port = 3306

serverid = 1

socket = /tmp/mysql.sock

skip-locking

#避免MySQL的外部锁定,减少出错几率增强稳定性。

skip-name-resolve

#禁止MySQL对外部连接进行DNS解析,使用这一选项可以消除MySQL进行DNS解析的时间。但需要注意,如果开启该选项,则所有远程主机连接授权都要使用IP地址方式,否则MySQL将无法正常处理连接请求!

back_log = 384

 

 #back_log参数的值指出在MySQL暂时停止响应新请求之前的短时间内多少个请求可以被存在堆栈中。

如果系统在一个短时间内有很多连接,则需要增大该参数的值,该参数值指定到来的TCP/IP连接的侦听队列的大小。不同的操作系统在这个队列大小上有它自

己的限制。 试图设定back_log高于你的操作系统的限制将是无效的。默认值为50。对于Linux系统推荐设置为小于512的整数。

key_buffer_size = 384M

#key_buffer_size指定用于索引的缓冲区大小,增加它可得到更好的索引处理性能。对于内存在4GB左右的服务器该参数可设置为256M或384M。注意:该参数值设置的过大反而会是服务器整体效率降低!

max_allowed_packet = 4M

thread_stack = 256K

table_cache = 614K

sort_buffer_size = 6M

#查询排序时所能使用的缓冲区大小。注意:该参数对应的分配内存是每连接独占,如果有100个连接,那么实际分配的总共排序缓冲区大小为100 × 6 = 600MB。所以,对于内存在4GB左右的服务器推荐设置为6-8M。

read_buffer_size = 4M

#读查询操作所能使用的缓冲区大小。和sort_buffer_size一样,该参数对应的分配内存也是每连接独享。

join_buffer_size = 8M

#联合查询操作所能使用的缓冲区大小,和sort_buffer_size一样,该参数对应的分配内存也是每连接独享。

myisam_sort_buffer_size = 64M

table_cache = 512

thread_cache_size = 64

query_cache_size = 64M

 

 #指定MySQL查询缓冲区的大小。可以通过在MySQL控制台观察,如果Qcache_lowmem_prunes的值非常大,则表明经常出现缓冲不

的情况;如果Qcache_hits的值非常大,则表明查询缓冲使用非常频繁,如果该值较小反而会影响效率,那么可以考虑不用查询缓

冲;Qcache_free_blocks,如果该值非常大,则表明缓冲区中碎片很多。

tmp_table_size = 256M

max_connections = 768

#指定MySQL允许的最大连接进程数。如果在访问论坛时经常出现Too Many Connections的错误提 示,则需要增大该参数值。

max_connect_errors = 1000

wait_timeout = 10

#指定一个请求的最大连接时间,对于4GB左右内存的服务器可以设置为5-10。

thread_concurrency = 8

#该参数取值为服务器逻辑CPU数量*2,在本例中,服务器有2颗物理CPU,而每颗物理CPU又支持H.T超线程,所以实际取值为4*2=8;这个目前也是双四核主流服务器配置。

skip-networking

#开启该选项可以彻底关闭MySQL的TCP/IP连接方式,如果WEB服务器是以远程连接的方式访问MySQL数据库服务器则不要开启该选项!否则将无法正常连接!

table_cache=1024

#物理内存越大,设置就越大。默认为2402,调到512-1024最佳

innodb_additional_mem_pool_size=4M

#默认为2M

innodb_flush_log_at_trx_commit=1

#设置为0就是等到innodb_log_buffer_size列队满后再统一储存,默认为1

innodb_log_buffer_size=2M

#默认为1M

innodb_thread_concurrency=8

#你的服务器CPU有几个就设置为几,建议用默认一般为8

key_buffer_size=256M

#默认为218,调到128最佳

tmp_table_size=64M

#默认为16M,调到64-256最挂

read_buffer_size=4M

#默认为64K

read_rnd_buffer_size=16M

#默认为256K

sort_buffer_size=32M

#默认为256K

thread_cache_size=120

#默认为60

query_cache_size=32M

※值得注意的是:

很多情况需要具体情况具体分析

一、如果Key_reads太大,则应该把my.cnf中Key_buffer_size变大,保持Key_reads/Key_read_requests至少1/100以上,越小越好。

二、如果Qcache_lowmem_prunes很大,就要增加Query_cache_size的值。

 

 很多时候我们发现,通过参数设置进行性能优化所带来的性能提升,可能并不如许多人想象的那样产生质的飞跃,除非是之前的设置存在严重不合理的情况。我们

不能将性能调优完全依托于通过DBA在数据库上线后进行的参数调整,而应该在系统设计和开发阶段就尽可能减少性能问题。

【51CTO独家特稿】如果单MySQL的优化始终还是顶不住压力时,这个时候我们就必须考虑MySQL的高可用架构(很多同学也爱说成是MySQL集群)了,目前可行的方案有:

一、MySQL Cluster

优势:可用性非常高,性能非常好。每份数据至少可在不同主机存一份拷贝,且冗余数据拷贝实时同步。但它的维护非常复杂,存在部分Bug,目前还不适合比较核心的线上系统,所以这个我不推荐。

二、DRBD磁盘网络镜像方案

 

 优势:软件功能强大,数据可在底层快设备级别跨物理主机镜像,且可根据性能和可靠性要求配置不同级别的同步。IO操作保持顺序,可满足数据库对数据一致

性的苛刻要求。但非分布式文件系统环境无法支持镜像数据同时可见,性能和可靠性两者相互矛盾,无法适用于性能和可靠性要求都比较苛刻的环境,维护成本高于

MySQL Replication。另外,DRBD也是官方推荐的可用于MySQL高可用方案之一,所以这个大家可根据实际环境来考虑是否部署。

三、MySQL Replication

 

 在实际应用场景中,MySQL

Replication是使用最为广泛的一种提高系统扩展性的设计手段。众多的MySQL使用者通过Replication功能提升系统的扩展性后,通过

简单的增加价格低廉的硬件设备成倍

甚至成数量级地提高了原有系统的性能,是广大MySQL中低端使用者非常喜欢的功能之一,也是许多MySQL使用者选择MySQL最为重要的原因。

比较常规的MySQL Replication架构也有好几种,这里分别简单说明下

MySQL Replication架构一:常规复制架构--Master-slaves,是由一个Master复制到一个或多个Salve的架构模式,主要用于读压力大的应用数据库端廉价扩展解决方案,读写分离,Master主要负责写方面的压力。

MySQL Replication架构二:级联复制架构,即Master-Slaves-Slaves,这个也是为了防止Slaves的读压力过大,而配置一层二级 Slaves,很容易解决Master端因为附属slave太多而成为瓶劲的风险。

MySQL Replication架构三:Dual Master与级联复制结合架构,即Master-Master-Slaves,最大的好处是既可以避免主Master的写操作受到Slave集群的复制带来的影响,而且保证了主Master的单点故障。

以上就是比较常见的MySQL replication架构方案,大家可根据自己公司的具体环境来设计 ,Mysql 负载均衡可考虑用LVS或Haproxy来做,高可用HA软件我推荐Heartbeat。

 

 MySQL

Replication的不足:如果Master主机硬件故障无法恢复,则可能造成部分未传送到slave端的数据丢失。所以大家应该根据自己目前的网络

规划,选择自己合理的Mysql架构方案,跟自己的MySQL

DBA和程序员多沟涌,多备份(备份我至少会做到本地和异地双备份),多测试,数据的事是最大的事,出不得半点差错


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/778504.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-08-22
下一篇2023-08-22

发表评论

登录后才能评论

评论列表(0条)

    保存