比如你要进行深度学习计算,建议使用腾讯云GN8/GN10X 实例。GN10Xp配备Tesla V100 NVLink 32GB GPU,具有强大的单精度浮点运算能力,并具备较大的 GPU 板载内存。最大实例规格配置8个 V100 ,80个 vGPU 和320GB主机内存,是深度学习训练的首选。
GN10Xp 最大实例规格具备125.6 TFLOPS 单精度浮点运算能力,支持 Tensor Core 加速,单卡搭载32GB显存,GPU 卡之间通过300GB/s的 NVLink 高速互连。强大的计算与数据吞吐能力大大缩短训练周期,使得复杂模型的快速迭代成为可能,人工智能相关业务得以把握先机。
腾讯云GPU云服务器,管理很简单GPU云服务器采用和云服务器CVM一致的管理方式,无需跳板机登录,简单易用。清晰的显卡驱动的安装、部署指引,免去高学习成本。而且节约成本,你无需预先采购、准备硬件资源,一次性购买,免除硬件更新带来的额外费用,有效降低基础设施建设投入。目前,腾讯云的GPU云服务器已全面支持包年包月计费和按量计费,你可以根据需要选择计费模式。
GPU 云服务器(GPU Cloud Computing,简称 GPU)是基于 GPU 应用的计算服务,具有实时高速的并行计算和浮点计算能力,一般适用于 3D 图形应用程序、视频解码、深度学习、科学计算等应用场景。 通常,GPU云服务器厂商提供和标准云服务器租用一致的管理方式,可以有效解放用户的计算压力,提升产品的计算处理效率与竞争力。 gpu云服务器的适用场景 适用于深度学习训练和推理,图像识别、语音识别等;计算金融学、地震分析、分子建模、基因组学、计算流体动力学等;高清视频转码、安防视频监控、大型视频会议等;三维设计与渲染、影音动画制作、工程建模与仿真(CAD/CAE)、医学成像、游戏测试等等。 gpu云服务器的使用性能 GPU云主机突破了传统GPU,能发挥极致性能,具有高并行、高吞吐、低时延等特点,在科学计算表现中,性能比传统架构提高几十倍。用户无需预先采购、准备硬件资源,可一次性购买,免除硬件更新带来的额外费用,能有效降低基础设施建设投入。 以上是关于GPU 云服务器的相关介绍。主要是看运行什么软件和数据量,训练数值大小,这里要强调一下,数值大小和数据量是不一样的。
深度学习服务器的核心部件还是CPU、硬盘、内存、GPU,特别是很多深度学习依靠GPU的大规模数据处理能力,这就要强调CPU的计算能力和数量,同时不同的数据对GPU的显存要求也不一样。
当下大部分都在用RTX3090做深度学习,最新RTX4090已经上市,单精度计算能力是RTX3090的2倍,这两个GPU都是24G显存;像A100强调双精度计算能力,显存有40G和80G两个版本,而A6000单精度计算能和RTX3090差不多,显存是48G,可以参考选择。
当然,最重要的还是口袋里的银子,A6000市场价大概是RTX的2倍还要多,A100最近更是要上十万了,估计也快买不到了,价高缺货;RTX3090/4090的价位低,性价比高,这也是为什么大部分人都选择它们做深度学习了,这是市场的选择。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)