图像空域增强和频域增强的基本原理是什么

图像空域增强和频域增强的基本原理是什么,第1张

图像增强的目的是改善图像的视觉效果或使图像更适合于人或机器的分析处理。通过图像增强可以减少图像噪声,提高目标与背景的对比度,亦可以强调或抑制图像中的某些细节。例如,消除照片中的划痕,改善光照不均匀的图像,突出目标的边缘等。

根据处理的空间可以将图像增强分为空域法和频域法,前者直接在图像的空间域(或图像空间)中对像素进行处理,后者在图像的变换域(即频域)内间接处理,然后经逆变换获得增强图像。空域增强可以分为点处理和区处理,频域增强可以分为低通滤波,高通滤波,带通滤波和同态滤波。

扩展资料

常用的图像增强处理方式包括灰度变换、直方图修正、图像锐化、噪声去除、几何畸变校正、频域滤波和彩色增强等。由于图像增强与感兴趣的物体特性、观察者的习惯和处理目的密切相关,尽管处理方式多种多样,但它带有很强的针对性。

因此,图像增强算法的应用也是有针对性的,并不存在一种通用的、适应各种应用场合的增强算法。于是,为了使各种不同特定目的的图像质量得到改善,产生了多种图像增强算法。这些算法根据处理空间的不同分为基于空间域的图像增强算法和基于变换域的图像增强算法。

基于空间域的图像增强算法又可以分为空域的变换增强算法、空域的滤波增强算法以及空域的彩色增强算法;基于变换域的图像增强算法可以分为频域的平滑增强算法、频域的锐化增强算法以及频域的彩色增强算法。

尽管各种图像增强技术已取得了长足的发展,形成了许多成熟、经典的处理方法,但新的增强技术依然在日新月异地发展完善,不断推陈出新,其中尤其以不引起图像模糊的去噪声方法(如空域的局部统计法)和新的频域滤波器增强技术(如小波变换,K-L变换等)最为引人瞩目。

参考资料来源:百度百科-图像增强

图像增强可分成两大类:频率域法和空间域法。

前者把图像看成一种二维信号,对其进行基于二维傅里叶变换的信号增强。采用低通滤波(即只让低频信号通过)法,可去掉图中的噪声;采用高通滤波法,则可增强边缘等高频信号,使模糊的图片变得清晰。

后者空间域法中具有代表性的算法有局部求平均值法和中值滤波(取局部邻域中的中间像素值)法等,它们可用于去除或减弱噪声。

方法

图像增强的方法是通过一定手段对原图像附加一些信息或变换数据,有选择地突出图像中感兴趣的特征或者抑制(掩盖)图像中某些不需要的特征,使图像与视觉响应特性相匹配。

在图像增强过程中,不分析图像降质的原因,处理后的图像不一定逼近原始图像。图像增强技术根据增强处理过程所在的空间不同,可分为基于空域的算法和基于频域的算法两大类。

灰度变换主要针对独立的像素点进行处理,由输入像素点的灰度值决定相应的输出像素点的灰度值,通过改变原始图像数据所占的灰度范围而使图像在视觉上得到改善。

1.1 线性灰度增强

线性灰度增强,将图像中所有点的灰度按照线性灰度变换函数进行变换。在曝光不足或过度的情况下,图像的灰度可能局限在一个很小的灰度范围内,这时图像可能会很模糊不清。利用一个线性单值函数对图像内的每一个像素做线性拓展,将会有效地改善图像的视觉效果。

图像处理技术与机器视觉密切相关,图像在采集过程中不可避免的会受到传感器灵敏度、噪声干扰以及模数转换时量化问题等各种因素的影响,而导致图像无法达到令人满意的视觉效果,为了实现人眼观察或者机器自动分析、识别的目的,对原始图像所做的改善行为,就被称作图像增强。图像增强处理主要内容是突出图像中感兴趣的部分,减弱或去除不需要的信息。这样使有用信息得到加强,从而得到一种更加实用的图像或者转换成一种更适合人或机器进行分析处理的图像。-一般而言,图像增强是根据具体的应用场景和图像的模糊情况而采用特定的增强方法来突出图像中的某些信息,削弱或消除无关信息,以达到强调图像的整体或局部特征的目的。图像增强的方法主要分为两类:空域增强法和频域增强法。空域增强法直接针对图像中的像素,对图像的灰度进行处理;频域增强法是基于图像的Fourier变换式对图像频谱进行改善,增强或抑制所希望的频谱。

常用的图像增强方法有:①灰度等级直方图处理:使加工后的图像在某一灰度范围内有更好的对比度;②干扰抑制:通过低通滤波、多图像平均、施行某类空间域算子等处理,抑制叠加在图像上的随机性干扰;③边缘锐化:通过高通滤波、差分运算或某种变换,使图形的轮廓线增强;④伪彩色处理:将黑白图像转换为彩色图像,从而使人们易于分析和检测图像包含的信息。由于对图像质量的要求越来越高,单一的增强处理往往难以达到令人满意的效果。因此,在图像的实际增强处理中,常常是几种方法组合运用,各取所长以达到最佳的增强效果。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/82928.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-03-04
下一篇2023-03-04

发表评论

登录后才能评论

评论列表(0条)

    保存