成果简介
具有高比表面积的多孔碳纳米片已经成为超级电容器最有希望的电极材料,但是它们的高孔体积导致相对较低的密度和较差的体积电容。 本文,苏州大学Chong Chen等研究人员 在《Carbon》期刊发表名为“Scalable synthesis of strutted nitrogen doped hierarchical porous carbon nanosheets for supercapacitors with both high gravimetric and volumetric performances”的论文, 研究通过新型的D-葡萄糖酸钙爆炸技术成功地按比例合成了支撑氮掺杂的分层多孔碳纳米片(SNPCNS),该碳纳米管具有通过支撑支撑的三维非聚集结构。
调节热解温度和时间,以及D-葡萄糖酸钙和脲甲醛树脂的质量比,以优化SNPCNS的比表面积,孔体积和电容性能。经过优化的SNPCNS具有高比表面积(539 m2g -1),表面杂原子丰富(N为8.1 at。%)和高密度(1.11 g cm -3)。因此,由SNPCNS电极组装的超级电容器具有非常高的重量/体积电容,分别为286Fg-1/317Fcm-3(在6MKOH中)和355Fg-1 / 394Fcm-3(在1 MH 2中)所以4)。重要的是,实现了重离子/体积能量密度(在离子液体中)为40.5 W h kg -1 /44.9 W h L -1(在离子液体中),优于先前报道的基于碳纳米片的对称超级电容器。这项工作为大规模和低成本生产用于能量存储的高性能多孔碳纳米片提供了新的策略。
图文导读
图1。氮掺杂分层多孔碳纳米片的合成示意图。
图2。SNPCNS-1:1-800-2h的(ab)SEM图像,(ce)TEM图像,(f)AFM图像和(gi)EDX元素映射图像。
图3。(a)XPS调查,(b)SNPCNS-1:1-800-2h的C1s,(c)N1s和(d)O1s光谱。
图4。SNPCNS材料通过热膨胀和热解转化制备过程的示意图。
图5。(a)20 mV s -1时的CV曲线,(b)1 A g -1时的GCD曲线,以及(c)SNPCNS样品在6 M KOH溶液中的体积电容。(d)在6 M KOH溶液中SNPCNS-1:1-800-2h的GCD曲线。(e)SNPCNS-1:1-800-2h在1 MH 2 SO 4和6 M KOH溶液中的奈奎斯特图。(f)SNPCNS-1:1-800-2h电极的重量/体积电容与其他报道的碳电极的比较。
图6。SNPCNS-1:1-800-2h在6 M KOH和[EMIm] NTf 2电解质中的电化学性能。
小结
总之,开发了一种D-葡萄糖酸钙爆炸技术,可以轻松而可规模地合成一种支链的氮掺杂分层多孔碳材料。 SNPCNS的高产量生产和出色的电容性能使其能够在超级电容器中进行大规模应用。
文献:
https://doi.org/10.1016/j.carbon.2021.04.062
成果简介
玉米芯作为一种可持续的生物质废弃料,主要由半纤维素组成。 本文,浙江大学盛奎川教授团队在《Energy Fuels》期刊 发表名为“Synthesis of Fe/N Co-doped Porous Carbon Spheres Derived from Corncob for Supercapacitors with High Performances”的论文, 研究以天然玉米芯为基材,通过连续的FeCl3介导的水热反应和温和的KHCO3活化路线Fe/N共掺杂多孔碳球体,用于超级电容器电极材料。
由于半纤维素的低水解温度和Fe 3+ 的水解促进作用,玉米芯衍生的氢化炭呈现出特殊的碳球形态。有趣的是,该碳在三聚氰胺介导的 KHCO 3活化后,球体形态得以完好保存。由于离子扩散距离短、独特的堆积结构和发达的微介孔结构碳球体,优化的 CCAC-Fe-M-50% 表现出优异的离子转移动力学和倍率性能(87% 高达 20 A g –1)。同时,在三电极装置中对CCAC-Fe-M-50%的电化学研究表明高电容(1 a g-1时为338 F g-1)。在双电极设置中,CCAC-Fe-M-50%||CCAC-Fe-M-50% 装置显示出最高的循环性(5000 次循环后保持率为 102.7%)和极低的R ct (0.59 Ω) 和Rs (4.54 Ω)。
这些优异的性能归因于大S BET (2305.7 m 2 g –1 )、多种氧化还原可能性 (Fe 3+、Fe2+和 N官能团),以及碳具有微介孔结构的球体形态,分别增强了离子物理吸附、赝电容和电解质/离子扩散。此外,所制造的CCAC-Fe系M-50%在中性电解质|| CCAC-Fe系M-50%设备表现出了极好的能量密度(Ëd 18.60 Wh kg-1)在功率密度(Pd) 455 W kg –1。目前提出的具有优异结果的策略可用于超级电容器和其他高 科技 应用的生物质基超性能电极材料的新开发。
图文导读
方案 1. 玉米芯Fe/N Co掺杂 PCSs的合成方案,用于超级电容器应用
图 1. (a) CCHC-Fe、(b) CCPC-Fe、(c) CCAC-Fe、(d) CCAC-Fe-M-25% 和 (e) CCAC-Fe-M-50 的 SEM 图像CCAC-Fe-M-50% 在 (f) 5900 、(g) 25 000 和 (h) 390 000 不同放大倍数下的 % 和 TEM 图像。
方案 2. (a) PCSs 的空间高效填充结构和 (b) 层堆叠多孔 碳结构的方案
图2. (a) PCSs 的 XRD 和 (b) 拉曼图谱,(c) CCAC-Fe-M-50% N 1s 的 XPS 光谱,以及 (d) CCAC-Fe-M 的 Fe 2p 的 XPS 光谱-50%。
图3. 6 M KOH 中的三电极设置
图4. 1M Na2SO4中的两电极设置
文献 :
https://doi.org/10.1021/acs.energyfuels.1c01922
成果简介
本文,浙江大学王树荣教授团队在《ChemElectroChem》期刊 发表名为“Preparation of Nitrogen and Sulfur Co-doped and Interconnected Hierarchical Porous Biochar by Pyrolysis of Mantis Shrimp in CO2 Atmosphere for Symmetric Supercapacitors”的论文, 研究以螳螂虾壳为原料,CO2为活化剂,通过一步热解活化制备多种N、O、S自掺杂生物质碳材料(MSCs)。
通过控制热解温度来调节碳材料的物理和化学性质。在这项研究中,MSCs 材料的最大比表面积 (SSA) 和孔体积分别为484.5 m 2 g -1和0.291cm 3 g -1在 700 C 时达到。此外,在表征试验中发现,氮和硫等杂原子已成功引入碳微观结构中。 MSC-750含有高达9.46%的N和0.52%的S ,虽然SSA只有431.6m2g-1 时,6MKOH对称超级电容器在1Ag-1下的比电容在所有样品中达到最大值 144.2Fg -1,这是由于其高含量的杂原子官能团产生的赝电容。
图文导读
图1、(a)–(d) 分别为样品 MSC-600、650、700 和 750 的 SEM 图像;(e) 和 (f) MSC-700 和 MSC-750 在高倍率下的形态学图像。
图2、(a)–(b) MSC-750的TEM图像;(c)–(i) MSC-750选定区域的TEM-EDS图像。
图3、(a) MSCs的拉曼光谱和 (b)XRD图。
图4、MSC的电化学性能
图5、(a) 奈奎斯特曲线;(b) 比电容的虚部(C“,vs 频率);(c)-(f) 两个串联的硬币型超级电容器分别用于点亮白色和红色 LED。
小结
通过二氧化碳一步热解活化螳螂虾壳制备多元素共掺杂多孔生物质活性炭材料,并将其应用于对称超级电容器。这些结果表明MSC-750是一种很有前景的超级电容器电极材料,为水产品的高附加值加工利用开辟了新途径。
文献:
https://doi.org/10.1002/celc.202101151
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)