磷酸铁锂离子电池正极粉末工艺过程中有机溶剂无水乙醇作用

磷酸铁锂离子电池正极粉末工艺过程中有机溶剂无水乙醇作用,第1张

无水乙醇的作用没什么可以保密的,只是最佳用量属于工艺参数,往往写在专利里面,这个需要保密。他的作用就是一定程度上防止颗粒团聚、起到细化颗粒度的作用。

一般要出厂要测试的参数从材料本身结构来讲,有:粒径分布(激光粒度仪数据)、SEM照片,晶格曲线(XRD)、水分含量(红外探测)、振实密度这几个数据。而另外需要组装电池进行半电池测试它的比容量(mAh/g),测试这些数据的原因当然是客户最关心这些数据啦,而从技术角度上讲,这些数据的优劣直接影响其后续制造电池膜片的成型工艺,当然需要测试啦。

至于每一步工艺的原因就要看具体用什么工艺了,过程需要测试的参数有随之有差异。这个就一言难进了。你需要了解的话,看看电池论坛上有没有更消息的说法。

影响电化学动力的另一个因素就是材料的电子电导率。在充放电循环时,电子必然伴随锂离子的插入和脱出。如果材料电子不能及时的导入和导出,则锂离子的扩散必然被电子的跃迁速率所取代。富集的电子将通过极化效应反过来限制锂离子的插入和脱出而使得材料电化学性能恶化。对于参与电化学反应的FePO4和LiFePO4 2种物质来说,它们均为绝缘相,因此导电性问题也成为制约材料性能的瓶颈因素。因此,减小材料颗粒尺寸和增大材料的电导率成为人们研究的焦点。一些科研工作者通过不同的工艺来减小材料的粒径,Maria等用新的合成工艺制备出了比表面积为8.95 m2/g的活性材料,该材料的可逆容量高达 162 mAh/g[15];Yamada等人通过优化工艺,制备了比表面积在0.5 m2/g~22 m2/g的粉体材料,这种材料最大可逆容量为165 mAh/g[16]。Huang等人通过适当的掺杂也制备出了尺度在100 nm~200 nm尺度的粉体材料,该材料的可逆容量也接近材料的理论容量。

研究者还致力于改善材料电子电导率,主要体现在包覆改性方面,Chen等通过不同形式在LiFePO4粉体上包覆裂解的活性碳,详细探讨了包覆活性碳对材料电化学性能的影响,得出包覆质量分数为0.9%的活性碳可以明显提高材料的可逆容量和比能量密度。

磷酸铁锂的热稳定性:

LixFePO4

LiFePO4

Li3Fe2(PO4)3

Fe7(PO4)6

a-FePO4

FePO4 + LiFePO4 + Li~xFePO4

FePO4 + LiFePO4

图8 磷酸铁锂在电池反应中的热稳定性原理

图8是磷酸铁锂在电池充放电过程中的变化。由图可见,在350-500℃的条件下,虽然磷酸铁锂发生了一定的变化,但一旦冷却下来,就可以自动恢复。这决定了磷酸铁锂具有极好的热稳定性和耐高温性。

用LiI作还原剂剂,化学锂化非晶FePO4(在400℃干燥)可获得非晶LiFePO4。氧化锂化合物的热重-差热分析(TG-DTA)曲线如图1所示。差热分析曲线中显示在 470℃有一个放热峰,这与化合物的结晶晶化有关。考虑到从470℃到550℃重量损失不明显,我们认为这个温度是非晶母体晶化的温度。

图2显示了该材料在氩气/氢气气氛中,在550℃分别加热1小时和5小时的X射线衍射谱。作为比较,在同一曲线上给出了晶体LiFePO4样品的衍射峰位置和相对强度(JCPDS card no. 42-0580)。值得注意的是,1小时加热就足够使材料晶化。改变热处理制度,晶体的晶粒尺寸没有多大的改变。晶粒尺寸(D)可以由Scherrer公式来计算:βcos(θ) = kλ/D,式中β是衍射峰在2θ时半峰全宽度,k在这里是接近整数的常数。 由(1 2 0), (1 1 1), (2 0 0)和(1 3 1)衍射峰(从衍射图上最佳的分辨)计算的平均晶粒尺寸D为85纳米(加热样品1小时)到90纳米(加热样品5小时)。

图1 非晶态LiFePO4的热重(虚线)和差热分析DTA(实线)曲线,实验在100毫升/分流速的氮气气氛中加热到高于环境温度800℃以上,加热速率为5℃/分

图2 晶体LiFePO4的X射线粉末衍射谱(Cu Kα辐射)。晶体LiFePO4是将非晶母体在氩气/氢气气氛中,分别在550℃加热1小时和5小时(分别对应最低的和最上面的曲线)获得的。作为比较,中间曲线是晶体LiFePO4样品的衍射峰位置和相对强度

图3显示了比表面积与退火时间的函数关系。随着退火时间的增加,比表面积减小:这与LiFePO4颗粒在热处理中的晶粒粗化有关。

图4a和4b是该材料热处理1小时和5小时后的SEM显微照片。可见,它们的组织特征都是球状结构,晶粒尺寸在100-150纳米。SEM证实了材料退火时间增长后晶粒会发生粗化(长大)。

图3 样品比表面积与退火时间的函数关系

(a) (b)

图4 晶体LiFePO4的SEM显微照片。该材料是将非晶母体在550℃,还原气氛中(Ar/H2)热处理1小时(a)和5小时(b)后的得到的

图5显示了退火5小时的材料电压外形与材料比容量的函数关系。电池在不同的恒流下放电,放电电流范围为17 mAg-1到150mAg-1。终止电压为2伏。电池总是在相同的恒电流(17 mAg-1)下再充电,以保证相同的初始条件。在最低的恒电流下放电(17 mAg-1),电池可以释放出155mAhg-1的比容量,比容量是基于活性材料的质量和相应的放电时间计算而来的。增加电流密度后,活性材料的可利用率下降:当放电恒电流增加30倍时,放电时间为0.29小时,比容量为133 mAhg-1。

图5 经5小时退火得到的LiFePO4在不同放电速率下的电压电压曲线。充电电流为17 mAg-1;温度为20℃,电极装填LiFePO4量为12.38mgcm-2

磷酸铁

一、中文化学名:磷酸铁,正磷酸铁磷酸铁产品图片二、英文化学名:Ferrous Phosphate 三、FePO4·2H2O,分子量186.82,CAS号:13463-10-0 四、物性:淡黄色或浅黄白色粉末。堆实密度0.65~0.85加热时溶于硫酸,难溶于其它酸,几不溶于水、醋酸、醇。在自然界中以蓝铁矿形式存在。多由亚铁盐溶液与磷酸钠作用而得。 五、技术规格: 电池级磷铁技术标准 Fe3+≥29.1% Mg2+≤50ppm Na+≤50ppm K+≤50ppm Cu2+≤10ppm Cr3+≤10ppm Pb2+≤15ppm 铁磷比=0.97~1.02 以上为生产磷酸铁锂电池材料专用规格。也可用作催化剂及制造陶瓷等。 六、包装:25KG/袋。 外袋为纸塑复合袋,内衬高压聚乙烯薄膜。 七、用途:主要用于制造磷酸铁锂电池材料。

草酸亚铁

草酸亚铁简介 一、品名:草酸亚铁 二、分子式:FeC2O4·2H2O 三、分子量:179.900 四、CAS号:6047-25-2 五、性质:淡黄色结晶性粉末,稍有轻微刺激性。熔点160℃(分解),振实密度:1.25g/cm3,松装密度:0.8g/cm3。真空下于142℃失去结晶水。冷水中溶解0.22g/100g,热水中0.026g/100g,能溶于冷盐溶液。 六、技术指标: 草酸亚铁(电池级) 主含量>99% 有效金属含量>=98% 氯化物<=0.005% 硫酸盐<=0.05% 高铁<=0.4% 重金属<=0.01% D50:3-5μm SEM 电镜类球形 七、用途:用作照相显影剂,用于制药工业。 电池级草酸亚铁可作为电池正极材料磷酸铁锂的原料,2008年北京奥运会使用的电动车其中锂离子电池的正极材料就是磷酸铁锂。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/87299.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-03-06
下一篇2023-03-06

发表评论

登录后才能评论

评论列表(0条)

    保存