煤储层的研究方法及实验技术

煤储层的研究方法及实验技术,第1张

煤储层研究方法和实验技术的不断改进是煤储层研究取得重要进展的标志之一。在煤的孔裂隙系统和渗透性的表征研究中,传统的研究方法主要有露头、煤壁的野外观察法(王生维等,2005),煤岩显微裂隙观察法(姚艳斌等,2006a),压汞毛管压力法(姚艳斌等,2006b),氮气或二氧化碳吸附法和扫描电镜分析法(SEM)等;其他新型研究方法有,透射电镜分析法(Lee et al.,2006),小角度中子散射法(SANS)(Radlinski et al.,2004)和小角度X射线散射法(SAXS)(Diduszko et al.,2000)等。

近年来,大量的非常规技术,特别是无损检测手段开始应用于煤储层的表征,其中包括医学中应用较广的核磁共振(NMR)技术和CT扫描技术,以及近来在常规低渗油气储层中取得重要应用进展的恒速压汞分析技术、X射线衍射(XRD)技术等。Karacan等(2001)采用X射线CT扫描(X-CT)方法研究了煤层气在煤的微观结构中的吸附和传输特征。Pitman等(2003)和Soto-Acosta等(2008)通过对煤中矿物的碳、氧同位素的X射线衍射(XRD)研究,分别分析了美国黑勇士盆地和印第安那宾夕法尼亚煤中割理发育及其成因特征。Mazumder等(2006)应用X射线计算机层析技术分析了割理和节理的发育特征。Karl-Heinze等(2008)首次采用CT扫描成像分析技术研究了煤中割理的发育特征,结果证明这种方法与实际割理的发育方位和密度具有高度一致性。国内的研究者,胡志明等(2006)和杨正明等(2006)首次将低场核磁共振技术和恒速压汞技术应用于低渗透率油田储层的研究,证明这种方法在研究煤的孔隙结构和吼道分布上具有较大优势。辽宁工程技术大学唐巨鹏等(2005)采用核磁成像(MRI)技术研究了煤层气解吸渗流特性,得出了新的煤层气解吸特性、渗流特性与有效应力间关系的实验结论。迄今为止,国内外还没有或少有应用核磁共振(NMR)技术和CT扫描技术来定量分析煤储层孔裂隙系统和渗透率等的相关报道。

另外,随着多学科交叉研究的发展,测井和地震等常规油气的方法逐渐应用于煤层气领域。如胡朝元等(2005)通过波阻抗、纵横波速和振幅、反射强度、瞬时相位等地震参数与煤储层物性关系理论的推导,建立了采用地震响应来预测煤储层裂隙发育程度的数学模型。杜翔(2007)提出了根据测井原理,利用煤层气测井参数来评价煤层气储层特征的方法。该方法为测井技术应用于分析煤储层的深度、厚度、煤质、含气量、渗透率、岩石力学性质、储层温度等研究提供了初步的研究思路。

总的来看,关于煤储层的研究方法与实验分析技术的研究已成为目前煤储层研究领域最活跃、进展最快的研究分支之一。然而,将低场核磁共振技术、恒速压汞技术和CT成像技术等用于煤储层的研究,在国内外还未见报道,因此进一步确定这些研究手段在煤储层研究中的具体应用将是今后的趋势。同时,地震和测井等手段有望进一步推动煤储层研究领域的发展。本书第4章和第5章内容将对低场核磁共振技术(low-field NMR)、恒速压汞技术和微焦点X射线断层扫描(μ-CT)技术在储层研究中的新应用进行重点阐述。

2.4.1 煤的孔隙及其特征

2.4.1.1 煤的双重孔隙系统

煤层是一种双重孔隙介质,属裂隙-孔隙型储层,这一点已在多领域、多学科范围内达成共识。图2.4是煤储层孔隙结构的理想模型,割理将煤分割成若干基质块,基质块中包含有大量的微小孔隙,是气体储存的主要空间,其渗透性很低;割理是煤中的次要孔隙系统,但却是煤层中流体(气体和水)渗流的主要通道。孔隙和割理都是煤储层研究的重要内容。

图2.4 煤的双重孔隙系统

(据Warren等,1996)

图2.4中的“割理”(cleat)是指煤层中近于垂直层面的天然裂隙,其成因有内生和外生(构造成因)之分,规模有大有小,与煤田地质学上的“裂隙”为同义词。在煤层气地质领域,一般将“割理”和“裂隙”通用,为了避免术语上的混乱,本书用“割理”一词。

2.4.1.2 研究方法比较

为了搞清楚煤储层的储、渗、保等性能,人们从室外到室内,由宏观到微观,采用多种手段和方法研究煤的割理和孔隙,表2.10列举了常用的几种方法。研究方法大体划分为观察描述和物理测试两大类,前者以定性研究为主,后者为定量研究,二者分别都具有宏观和微观手段。

从表2.10可以看出,有些方法主要是研究割理,如巷道井壁和手标本观察、煤岩抛光块样的光学显微镜观察等;有些方法主要是研究孔隙,如水孔隙率测定和低温氮吸附;有些方法则将孔隙-割理一并研究,如氦孔隙率和压汞试验;有些方法将割理和孔隙分别研究,如扫描电镜方法。

表2.10 煤层双重孔隙系统常用研究方法比较

(据张新民等,2002)

根据孔隙-割理一并研究的物理测试结果,通常将煤中孔隙(包含割理)的空间尺度划分为:<0.01μm为微孔,0.01~0.1μm为小孔,0.1~1μm为中孔,>1μm为大孔。通过观察描述可以确定割理和孔隙的成因类型、连通性,统计割理的优势方位、密度等,获得很重要的第一手资料,是煤储层研究的有效途径之一。通过巷道井壁、手标本、光学显微镜、扫描电镜等不同尺度上的大量观察与研究,可在较大范围内了解我国煤中割理和孔隙的基本特征,加深和扩充对煤储层的认识。

2.4.1.3 煤孔隙的扫描电子显微特征

扫描电子显微镜(scanning electron microscope,以下简称SEM或扫描电镜)是对煤层以及砂岩、灰岩、喷发岩等油气储层进行评价和研究的必不可少的有效手段。根据扫描电镜的有效分辨率,煤中小孔和中孔是其研究的主要对象。

2.4.1.4 煤孔隙的成因类型

煤的孔隙成因及其发育特征是煤体结构、煤层生气、储气及渗透性能的直接反映。根据成因,Gan(1972)等将煤中孔隙划分为分子间孔、煤植物组织孔、热成因孔和裂缝孔。郝琦(1987)将其划分为植物组织孔、气孔、粒间孔、晶间孔、铸模孔和溶蚀孔等,其中有些名称很大程度上借用了砂岩或灰岩储层的名称。然而,煤储层与砂岩、灰岩储层有较大的区别。本书立足于煤的岩石结构和构造,以煤的变质、变形特征为基础,以大量的扫描电镜观察结果为依据,将煤孔隙的成因类型划分为4大类9小类(表2.11)。

表2.11 煤的孔隙类型及其成因简述

(据张新民等,2002)

(1)原生孔

原生孔是煤沉积时已有的孔隙,原生孔分为结构孔和屑间孔。

结构孔(或称植物组织孔)是成煤植物本身所具有的各种组织结构孔,如细胞腔、纹孔、筛孔、髓射孔等,其中细胞腔是煤中最常见的。结构孔的孔径为几至几十微米,形状呈椭圆状、三角状和不规则状等。细胞腔大多都有程度不同的变形,空间连通性差,尤其是纤维状丝质体的细胞腔,仅局限于向一个方向发育,相互之间很少连通。

屑间孔指煤中各种碎屑状显微组分,如镜屑体、惰屑体、壳屑体等碎屑颗粒之间的孔隙。这些碎屑颗粒无一定形态,呈不规则棱角状、半棱角状或似圆状等,大小2~30 μm不等(陈佩元,1996),由其构成的屑间孔的形态以不规则状为主,孔的大小一般小于碎屑。这些碎屑可能来自于成煤早期被降解或运移而机械破坏的植物残体,因此,屑间孔为原生孔。屑间孔的发育受碎屑颗粒的制约,仅微区连通,而且由于煤中碎屑状显微组分的含量很少,所以屑间孔的数量较少,对煤储层渗透率贡献不大。屑间孔相当于以往文献中描述的粒间孔或粒状沉积结构孔,粒间孔是砂岩储层的主要孔隙,对砂岩的渗透率起着决定性作用,为了区别于砂岩储层,将煤储层中碎屑颗粒之间的孔称为屑间孔。

原生孔在煤的低变质阶段保存较多,随着变质程度的加深或构造作用的破坏,原生孔发生变形、缩小、闭合乃至消失等变化,原生孔不能再生。

(2)气孔

煤化作用过程中由生气和聚气作用而形成的孔为气孔。有的学者称之为热成因孔,有的学者称之为变质孔。常见单个气孔的大小为0.05~3 μm,1 μm左右者多见。单个气孔的形态以圆形为主,边缘圆滑;其次有椭圆形、梨形、圆管形、不规则港湾形等。气孔大多以孤立的形式存在,相互之间连通性不好。

不同煤岩组分中气孔的发育特征不同。壳质组气孔最发育,并大多以群体的形式出现,有些壳质体具有外壳壁,壳壁上很少有气孔,壳内气孔密集。镜质组气孔较发育,但很不均匀,成群的特点突出,气孔群中的气孔排列无序或有序;椭圆形及圆管形气孔的长轴常定向排列;气孔群与气孔群之间很少连通,有时气孔与割理连通。惰质组中很少见有气孔。

(3)外生孔

煤固结成岩后,受地质构造作用而形成的孔隙为外生孔。外生孔可分为角砾孔、碎粒孔和摩擦孔。

角砾孔是煤受构造破坏而形成的角砾之间的孔。角砾呈直边尖角状,相互之间位移很小或没有位移,角砾孔的大小以2~10 μm者居多。原生结构煤和碎裂煤的镜质组中角砾孔发育较好,并常有喉道发育,局部连通性比较好。在轻度变形的煤中,角砾孔占优势,对提高煤储层渗透率有利。

碎粒孔是煤受较严重的构造破坏而形成的碎粒之间的孔,碎粒呈似圆状、条状或片状(张慧,1998),碎粒之间有位移或滚动,碎粒大小多为5~50 μm,其孔隙大小为0.5~5 μm,碎粒孔体积小,易堵塞。

摩擦孔是煤中压性构造面上常有的孔隙,此乃压应力或剪应力作用下,面与面之间相互摩擦和滑动而形成的孔。摩擦孔有圆状、线状、沟槽状及长三角状等形态,且常有方向性,孔边缘多为锯齿状,大小相差悬殊,小者1~2 μm,大者几十或几百微米。摩擦孔仅发生于构造面上,空间连通性差。

(4)矿物质孔

由于矿物质的存在而产生的孔隙统称为矿物质孔。孔的大小以微米级为主,常见的有铸模孔、溶蚀孔和晶间孔。铸模孔是煤中原生矿物质在有机质中因硬度差异而铸成的印坑。溶蚀孔是煤中可溶性矿物质(碳酸盐类、长石等)在长期气、水作用下受溶蚀而形成的孔。晶间孔指矿物晶粒之间的孔,有原生的,也有次生的。

2.4.1.5 孔隙在煤储层研究中的作用与意义

煤孔隙的成因类型多、形态复杂、大小不等。原生孔、外生孔和矿物质孔以>1 μm的大孔级孔隙为主,有利于煤层气渗流;气孔以0.05~1 μm的小、中孔级孔隙为主,有利于煤层气聚集和渗流;<0.01 μm的微孔主要为分子结构孔,对煤层气渗流的意义不大,扫描电镜也难以分辨。

各类孔隙都在有限的区域内发育,有的为孤立孔隙,有的局部连通,没有一种孔隙是在整个煤层中连通的。煤呈层状结构,此结构制约各类孔隙在三维空间上的连通,这是煤基质渗透率低的原因之一。煤层气在煤层内部是运动着的,各类孔隙都可成为储气空间,孔隙多有利于提高煤层的储集性能。各类孔隙的空间连通性差,但可以借助于割理来参与双重孔隙系统,因此,孔隙多有利于煤层气的储存和扩散,也有利于煤层气的渗流。

原生孔如保存完整表明煤体原生状态保存好;气孔发育的煤层生气与储气性能好;角砾孔占优势的煤层渗透率好;碎粒孔和摩擦孔多的煤层受构造破坏严重,煤层整体渗透率低;溶蚀孔和次生矿物晶间孔发育则反映煤层的透水性好。对煤中孔隙的研究有助于提高对煤储层性质的认识和储集性能的判断。

2.4.2 煤的割理系统

2.4.2.1 割理的规模、形态及评价

(1)割理的规模类型

割理的规模存在很大差异,小者仅数微米长,大者数米长。不同规模的割理在煤层中的发育程度相差较大,对气体的渗流起着不同的作用。本书按照割理的规模以及割理与煤层、煤岩类型及煤岩成分的关系对其进行分类(表2.12)。

表2.12 割理的规模类型及特征简述

(据张新民等,2002)

(2)割理的三维几何形态

割理系统有相互大致垂直的两组,其中延伸长度大、且发育的一组叫面割理;被面割理横切的另一组叫端割理(图2.5)。

割理的长度在层面上可测量到,发育的面割理呈等间距分布,其长度变化范围很大(见表2.12)。受煤岩成分在平面上相变的控制,有的镜煤或亮煤分层在几米甚至几十米内分布都很稳定,而有的几厘米内即出现变化。不发育的面割理在层面上以短裂纹的形式出现,宏观下从几毫米到几厘米。面割理的高度受煤岩类型分层和煤岩成分厚度控制,总体上煤的光泽越亮、镜煤和亮煤越多、厚度越大,割理越发育、割理高度越大,割理高度小到几微米,大到几十厘米。

端割理一般与面割理是互相连通的。端割理的长度受面割理间距的控制,面割理间距越宽,端割理越长。端割理与面割理的高度受控因素相同,主要与煤岩类型和煤岩组分有关。

割理的宽度与其规模有关。割理规模越大,宽度亦越大,变化范围一般为1 μm至几厘米。

割理形态也是多种多样,在层面上主要有:①网状,这种割理连通性好,极发育;②一组大致平行排列的面割理极发育,而端割理极少,这种割理发育,连通性较好;③面割理呈短裂纹状或断续状,端割理少见,这种割理连通性差,较发育。

图2.5 煤中割理系统图

(据张新民等,2002)

剖面上,割理主要呈垂直于层理或微斜交层理平行排列。

(3)割理的评价方法及标准

割理的数量、几何形态、连通性等相差很大,若无统一评价方法和标准,很难对煤中割理的发育程度、其对渗透性的贡献做出客观的评价,亦不便于资料的对比和综合使用。鉴于此,现对割理密度、连通性及发育程度提出以下评价标准及方法。

1)割理密度:表示一定距离内割理数量的多少,反映割理发育的程度。密度的测量与研究方法有关,肉眼的分辨率仅可见到大于0.1mm的割理;而光学显微镜下可分辨出大于1 μm的割理;扫描电镜下放大500倍可分辨出长度0.6 μm的割理。由于分辨率的限制,用不同研究方法所测得的割理是不同类型的,其密度也相差很大,如汪家寨11~13煤层,手标本观察统计面割理密度为20~50条/10cm,块煤光片肉眼统计面割理为38~42条/10cm,偏光显微镜下统计为 210条/10cm,而扫描电镜下放大 480倍则为3333条/cm2。可见不同的统计方法,其割理的规模和密度相差很大。根据我国煤中割理的特征,根据尺度不同,将割理的密度划分为3个级别(表2.13)。

表2.13 割理密度级别划分

(据张新民等,2002)

2)割理的连通性:连通性包括同一割理类型之间的连通以及不同割理类型之间的连通状况。仅有超微型割理之间的连通,而缺少微型、小型及其他更大型割理的连通,即使超微型割理再发育,流体也难以渗流;同理,仅有巨型和大型割理发育,而更小型的割理不发育,孔隙的流体无法与巨型和大型割理沟通,成为死孔隙。要使渗透性好,产气量高,从超微型→微型→小型→中型→大型→巨型割理等各级别的割理内部及相互之间形成网络,互相连通,才会出现真正高渗透性储层。根据割理之间的连通状况、对渗透性的贡献以及几何形态特征,将连通性划分为3个级别(表2.14)。

表2.14 割理的连通性等级划分

(据张新民等,2002)

3)割理发育程度:包括割理的密度、长度、高度、裂口宽度及连通性,在整体上反映割理的发育状况及其对煤储层渗透性的影响。主要采用密度和连通性两个指标对割理的发育程度进行划分(表2.15)。

表2.15 割理发育程度划分

(据张新民等,2002)

2.4.2.2 我国部分矿区煤的割理特征

(1)宏观割理特征

通过对我国部分煤矿区煤样品进行分析,割理的统计结果列于表2.16。割理密度随着割理规模变小而加密,其变化趋势为大型<中型<小型。大型割理密度为0.1~23条/10cm,一般为1~6条/10cm;中型割理密度明显增大,密度为3~50条/10cm;小型割理密度为3~140条/10cm。单从割理密度看,中、小型割理密度均大于等于3条/10cm,割理发育。不同类型割理的密度与发育程度均符合上述发育规律,贯通一个以上煤岩类型的割理密度自然少于一个煤岩类型内的割理密度,一个煤岩类型内的割理密度又少于单一煤岩组分内的割理密度。

据矿井观察,鹤岗、七台河、阳泉、离柳、韩城、临涣、南桐、松藻、水城和盘江等矿区大、中、小型割理属较发育或发育,网状割理常见;晋城、鹤壁、平顶山、宿县、吐-哈盆地等大型割理较发育或不发育。

美国不同煤阶(Rmax=0.28%~3.86%)的煤层,在煤壁上观察到面割理密度是0.5~50条/10cm,面割理密度平均为1.2~16条/10cm,与我国主要矿区煤层的大、中型面割理密度比较接近。

(2)割理走向

割理走向与割理形成时区域水平主应力的方向有关,以致出现不同煤盆地割理走向不同(表2.16),同一煤盆地割理走向也不同的现象。如吐-哈盆地三道岭矿区,各矿井割理走向基本一致,为NE向;鹤岗煤田北部岭北矿割理走向为近SN向,而中部南山矿割理走向为NW向;沁水煤田北部阳泉矿区割理走向为NNE向,而南部晋城矿区割理走向则为NW向。

表2.16 我国主要矿区煤层面割理系统统计

(据张新民等,2002)

(3)微型割理特征

反光显微镜下,各矿区微型面割理密度为17~294条/10cm(表2.17),割理发育程度以较发育为主。鹤岗、韩城、丰城、南桐、松藻和水城等矿区面割理发育,密度大于100条/10cm;三道岭、铁法矿区煤割理密度较小。端割理密度一般小于面割理,密度为10~118条/10cm。

表2.17 部分矿区微型割理统计

续表

(据张新民等,2002)

微型割理密度及发育程度与块煤光片的宏观煤岩类型有关,煤的总体光泽越亮,割理密度越大,一般是光亮煤>半亮煤>半暗煤>暗淡煤。如南桐矿同一煤层(13-1煤层),光亮煤(13-1-1样和13-1-4样)面割理密度为92~133条/10cm;半暗-半亮煤(13-1-5样)面割理密度为100条/10cm;半暗煤(13-1-3样)面割理密度为71条/10cm;暗淡煤(13-1-6样)面割理密度为37条/10cm。其他矿区的样品中也有类似现象。

2.4.2.3 割理的扫描电子显微特征

扫描电镜主要观察煤中宽度为0.1~10 μm的微割理和超微割理。样品为煤岩块样的自然断面,该断面可以是垂直层理的,也可以是层面、裂面、滑面、组分界面等。

(1)割理的电子显微形态特征

按成因可以将割理划分为内生割理(或称收缩割理)和构造割理(或称外生割理)。

扫描电镜下内生割理多呈短的直线状,不穿越组分,大体垂直层理,主要发育于镜质组中,尤其是均质镜质体中。镜质体厚度越大,内生割理越长,并常呈等间距排列。与构造割理相比,内生割理宽度大(多为几个微米),密度小,派生割理少,连通性差。

构造割理呈折线状、曲线状、锯齿状和羽列状等,大多斜交层理,穿越不同组分,无充填或被碎粒充填。构造割理通常间距不等,长度、宽度和密度也大小不等,且相差悬殊。构造割理常有派生共轭割理伴生,不同级别的割理组成割理网络,常见的割理网络形态有菱形网络、三角形网络、多边形网络及方格形网络等。

(2)割理密度及其计算方法

从宏观到微观,煤储层割理密度的计算方法有多种,有的按线计算,有的按面积计算,类似于变形矿物位错密度的计算方法(张慧,1989)。扫描电镜观察的是二维图像,故按面积计算割理密度比较合适。以每平方厘米可见的割理条数为割理密度,条数的确定以方向不同为一条,不分长短、宽窄和成因。计算公式如下:

割理密度=条数×倍数2/屏幕面积(单位:条/cm2)

割理密度随观察尺度的不同而不同,比较不同煤层、不同煤体或不同组分的割理密度,应采用同一观察尺度。从大量的观察结果来看,煤中小于0.5 μm的割理已不多见(构造形变严重的煤除外),因此,统计煤中割理密度采用放大500倍左右为宜。

(3)原生结构煤的割理密度

表2.18列出了部分原生结构煤的统计割理密度,其煤体结构类型以手标本观察为准,不代表整个煤层,放大倍数均为480倍,有效分辨下限大约为0.62 μm。统计割理密度为若干屏幕上计算结果的平均值,一个屏幕上的计算结果为微区割理密度。

当割理密度<300条/cm2时,割理大多局限于镜质组中,受惰质组和暗煤区(富含矿物质的区域)的阻挡,割理难以连通成网,故割理不发育、不成网。当割理密度为300~1000条/cm2时,部分割理可以在局部穿越不同组分,形成微区网络,割理为较发育。当割理密度>1000条/cm2时,宽而长的割理穿越不同组分,并常有次级共轭割理派生,形成各种组态的割理网络,此时割理为发育且成网。

从表2.18所列的情况来看,多数煤层的割理为较发育、微区成网,少数煤层为不发育和发育。黑龙江七台河90煤层和淮南新集一矿11煤层的块样割理密度>1000条/cm2,为割理发育且成网;水城汪家寨11~13煤层块样的统计割理密度为3333条/cm2,割理发育,且成网,该样品中显微构造较多。

表2.18 原生结构煤扫描电镜放大480倍统计割理密度

注:WY为无烟煤;PM为贫煤;FM为肥煤;QM为气煤。 (据张新民等,2002)

表2.19为部分原生结构煤的微区割理密度,从阳泉四矿15煤、鹤岗岭北29煤和南山15煤的内生割理密度计算结果来看,内生割理宽度大,数微米以上者居多,且密度小(37~215条/cm2),难成网。

表2.19 原生结构煤微区割理密度计算结果

注:WY为无烟煤;SM为瘦煤;FM为肥煤;QM为气煤;CY为长焰煤。 (据张新民等,2002)

同一煤层中,镜质组和惰质组的割理密度相差悬殊,如陕北某地早侏罗世煤层中镜质组的割理密度为1200条/cm2,惰质组割理密度为200条/cm2,镜质组是惰质组的6倍;又如淮南新庄子矿11 煤,镜质组中的割理密度为4167条/cm2,混合组中的割理密度为1351条/cm2,前者是后者的3倍多;韩城下峪口3煤和宁夏银洞沟煤的割理密度达6667条/cm2和7733条/cm2。这些煤宏观上为原生结构,实际上都经受过一定程度的构造破坏,割理密度的提高主要是由于构造割理的产生。

(4)构造煤的割理密度

碎裂煤、碎粒煤和糜棱煤统称构造煤。构造煤主要由各种构造微粒组成。构造煤中的割理是扫描电镜下的显微构造之一,表2.20列出了部分构造煤的微区割理密度。

表2.20 构造煤的微区割理密度

(据张新民等,2002)

由表2.20可见,构造煤中的割理宽度小、级别多、密度大,分布极不均匀,密度大多为每平方厘米几千条,有时高达几十万条。密度高达几万至几十万条的微区大多在煤中强度较大的角砾和碎粒上或滑面上。在有围压的情况下,这些高割理密度区为一个整体,围压一经释放即散为碎粒或糜棱质。构造煤的割理密度虽然很大,但都是微区的,不足以影响煤层整体上的储集性能。

构造破坏作用对煤储层有正、反两方面的作用,轻微适度的构造破坏作用使煤层破裂,产生角砾和割理,可提高渗透率;较强烈的构造破坏作用使煤层碎粒化或糜棱化,破坏了煤层的原生结构,降低了割理系统的连通性,从而使煤层渗透性变差。

2.4.2.4 割理发育的影响因素

煤中割理的发育具极不均匀性,影响煤中割理发育的因素可分为外界因素和内在因素(煤层本身)。外界因素主要指作用于煤层的外力的性质、大小及作用方式,其次还有煤层顶底板岩性及其机械性能;内在因素有煤岩组分与变质程度等。

(1)有机显微组分的影响

镜质组(尤其是均质镜质体)致密、均匀、块体大,有利于割理顺利延伸和发展。惰质组是多孔状和纤维状的,纤维的纵向常顺层排列,空隙使得应力释放,纤维状丝质体在垂直纤维方向上裂开比较困难,因此惰质组有释放应力、减弱割理和阻挡割理的作用,对割理发育不利。壳质组的机械强度大于镜质组和惰质组,其形变过程类似于镜质组,多数煤层含壳质组很少,故壳质组对煤储层割理发育影响不大,当其含量高时,应加以重视。

惰质组含量高的煤层不利于割理的发育和连通,如鄂尔多斯早侏罗世的很多煤层惰质组含量常在50%以上,这些煤层中惰质组堵塞割理的现象是显而易见的。镜质组含量高的煤层,割理发育,连通成网,可谓优等煤储层,如晋城、铁法、抚顺等地的煤层即是如此。

(2)矿物质的影响

矿物质比有机质硬度大,煤中矿物质(主要指原生矿物质)大多以不均匀的状态赋存。含矿物质多的地方,煤的光泽暗淡。暗淡区的割理发育程度低于光亮区,从宏观到微观都常见到光亮煤割理宽、数量多,而暗淡煤割理窄、数量少的现象,表明矿物质在一定条件下不利于割理发育。但在形变严重的碎粒煤或糜棱煤中,未碎和未成粉的较大的块体,一般就是富含矿物质的暗淡煤,此暗淡煤中有较高的割理密度,表明矿物质有提高煤体强度的作用。

2.4.3 煤变质程度的影响

我国煤变质的特点之一是变质时间晚,很多煤级的增高都是在燕山期,因此可以把一定范围内的不同煤级视为处于同一应力场中。从表2.18来看,无烟煤的割理密度低于烟煤,烟煤机械强度低,对外力反应敏感,容易形变;无烟煤机械强度相对较高,同一适当的应力场中,中变质煤割理密度高于高变质煤。但中变质煤中的割理容易被碎粒、滑移膜等堵塞,而高变质煤的成块率高,割理连通相对较好。

从割理密度与Rmax关系图(图2.6)可见,Rmax为0.51%~4.38%,割理密度分布较宽、较乱,但也可看出,在Rmax<0.8%之前,密度值均处于较低状态;当Rmax为0.8%~2.5%之间时,密度变化范围很宽,这与样品的煤岩类型有关,总的趋势是比Rmax<0.8%和Rmax>2.5%时的割理密度大。

图2.6 面割理密度与煤变质程度关系

(据张新民等,2002)

煤层气储层是由孔隙、裂隙组成的双重结构系统(Tremain et al.,1990Kulander et al.,1993Laubach et al.,1998张慧,2001苏现波等,2009)(图4-6)。煤层被理想化为由一系列裂隙切割成规则的含微孔隙的基质块体,煤中的基质孔隙,是吸附态和游离态煤层气的主要储集场所,气体的吸附量与煤的孔隙发育程度和孔隙结构特征有关。煤基质孔隙孔径小,数量多,是孔内表面积的主要贡献者,为煤层气的储集提供了充足的空间,煤储层的裂隙系统是煤中流体渗透的主要通道。

图4-6 煤储层几何模型

一、煤储层孔隙系统

1.煤储层孔隙分类

煤孔隙特征往往以下列指标参数予以表征:孔隙大小,形态,结构,类型,孔隙度,孔容,比表面积及孔隙的分形特征。在目前技术条件下,多采用普通显微镜和扫描电镜(SEM)观测,以及压汞法及低温氮吸附法测试等方法来研究煤的孔隙特征。

煤基质孔隙有两种分类方法:成因分类和大小分类。

不同研究者对煤基质孔隙的成因分类的方案也不相同。郝琦(1987)划分的成因类型为植物组织孔、气孔、粒间孔、晶间孔、铸模孔、溶蚀孔等。张慧(2001)以煤岩显微组分和煤的变质和变形特征为基础,参照扫描电镜观察结果,按成因特征将煤的孔隙分为原生孔、变质孔、外生孔及矿物质孔等四大类十小类。此外陈萍等(2001)研究了煤孔隙的形态分类,桑树勋等(2005)分别探讨了煤中固气作用类型分类,傅雪海等对煤孔隙进行了分形及自然分类(表4-1)。孔隙的成因类型及发育特征是煤储层生气储气和渗透性能的直接反映。煤孔隙成因类型多,形态复杂,大小不等,各类孔隙都是在微区发育或微区连通,它们借助于裂隙而参与煤层气的渗流系统。

表4-1 煤岩孔隙分类

注:分类未标明者均为直径,单位为nm。(转引自汤达祯等,2010)

煤基质的孔径分类一般采用霍多特(Ходот)(1961)的分类方案。霍多特对煤的孔径结构划分是在工业吸附剂的基础上提出的,主要依据孔径与气体分子的相互作用特征。煤是复杂多孔介质,煤中孔隙是指煤体未被固体物(有机质和矿物质)充填的空间。霍多特(1961)曾经按空间尺度将煤孔隙分为大孔(>1000nm)、中孔(100~1000nm)、小孔(10~100nm)、微孔(<10nm)。气体在大孔中主要以层流和紊流方式渗透,在微孔中以毛细管凝结、物理吸附及扩散现象等方式存在。考虑到煤层气中主要成分甲烷分子的有效分子直径为0.38nm的运聚特征和分类影响范围等因素,研究者主要采用霍多特的分类。

2.煤孔隙定量描述

煤基质孔隙可用3个参数定量描述:总孔容,即单位质量煤中孔隙的总体积(cm3/g)孔面积,即单位质量煤中孔隙的表面积(cm2/g)孔隙率,即单位体积煤中孔隙所占的体积(%)。对煤层而言,按常规油气储层的分类多属致密不可渗透储层或低渗透储层,煤层气的运移又是通过裂隙实现的,基质孔隙中煤层气的运动仅是扩散。因此,煤层气的研究中一般不采用有效孔隙率这一名词,而采用裂隙孔隙率,用于评价煤层气的运移情况。绝对孔隙度则用于评价储层的储集性能。煤的总孔容一般在0.02~0.2cm3/g之间,孔面积一般在9~35cm2/g之间,孔隙率在1%~6%之间。

3.煤孔隙影响因素

煤的孔隙度、孔径分布和孔比表面积与煤级关系密切。

镜质组反射率增高,煤的孔隙度一般呈高—低—高规律变化。低煤级时煤的结构疏松,孔隙体积大,大孔占主要地位,孔隙度相对较大中煤级时,大孔隙减少高煤级时,孔隙体积小,微孔占主要地位。宁正伟等(1996)对华北焦作、淮南、安阳、唐山、平顶山等矿区石炭-二叠系45个煤样压汞及氦气的测试表明,高变质程度的贫煤、无烟煤微孔发育,占总孔隙体积的50%以上,大、中孔所占比例较低,平均小于总孔隙体积的20%。中变质程度的肥煤、焦煤、瘦煤,大、中孔发育,尤以焦煤最高,可占总孔隙体积的38%左右,微孔相对较低,小于总孔隙体积的50%。因此中演化变质程度的煤大、中孔发育,对煤层气的降压、解吸、扩散、运移有利,是煤层气储层评价中最有利的煤级。

煤的孔径分布和煤化程度有着密切的关系。根据陈鹏(2001)研究,褐煤中不同级别孔隙的分布较为均匀到长焰煤阶段,微孔显著增加,而大孔、中孔则明显减少。到中等煤化程度的烟煤阶段,其孔径分布以大孔和微孔占优势,而中孔比例较低。到高变质煤阶段如瘦煤、无烟煤,微孔占大多数,而孔径大于100nm的中孔、大孔仅占总孔容的10%左右。

孔比表面积是表征煤微孔结构的一个重要指标。一般微孔构成煤的吸附空间,对应于基质内部微孔隙,具有很大的比表面积小孔构成煤层毛细凝结和扩散区域中孔构成煤层气缓慢渗流区域大孔则构成强烈层流区域,对应于割理缝及构造裂隙等。大的比表面积表明其吸附煤层气的能力强,而比表面积的主要贡献者为微孔。一般认为,煤对气体的吸附能力随着煤级的增高而增大。按照这一规律,煤的比表面积也应当随着煤级的增高而增加。但对我国部分煤样进行低温氮测试的结果发现却不完全如此(图4-7)。可以看出,我国部分煤样低温氮测试的比表面积和煤级的关系,与煤的孔隙度和煤级的关系相类似。在中、低煤级阶段,随着煤变质程度的增高,煤的比表面积逐渐降低到无烟煤阶段,煤的比表面积又开始增加。比表面积的最小值位于烟煤与无烟煤的交界处(Ro=2.5%)。而Bustin等(1998)所进行的CO2等温吸附实验显示,煤级增高,煤样的微孔孔容和表面积先减后增,在烟煤阶段出现最小值。

图4-7 煤的比表面积与煤级的关系

二、煤储层微裂隙系统与煤储层渗透率

1.煤储层裂缝系统分类

煤的裂隙与孔隙共同构成了煤层气在煤储层内的赋存空间和运移通道。王生维等(1997)从煤层气产出特征分析的需要出发,广泛地研究了煤裂隙与孔隙的特征后,提出了适用于煤储层岩石物理研究和煤层气产出特征分析的煤储层孔隙、裂隙分类与命名方案(表4-2)。霍永忠(2004)提出了煤储层显微孔裂隙的分类方案(表4-3)。

表4-2 煤储层孔隙、裂隙系统划分及术语

(据王生维等,1997)

表4-3 煤储层显微孔—裂隙分类

(据霍永忠,2004)

在显微尺度下识别的微裂隙按照其延展性和开放性,可从实用角度划分为A、B、C、D四类(表4-4)。

表4-4 煤储层微裂隙实用分类简表

(据姚艳斌等,2007)

2.煤储层裂缝系统形成影响因素与煤孔隙受到煤变质作用影响一样,煤裂缝同样受到煤变质作用影响。张胜利(1995张胜利等,1996)研究认为,中等变质的光亮煤和半亮煤中割理最发育,这些煤层分布区是煤层气勘探开发的优选靶区。Law等(1993)认为割理频率与煤阶存在函数关系,割理频率从褐煤到中等挥发分烟煤随煤阶升高而增大,然后到无烟煤时随煤阶上升而下降。宁正伟等(1996)经过研究也发现,中等变质程度的煤层内生裂隙最为发育,提高了煤的渗透性和基质孔隙连通性,煤储层物性条件好,在勘探开发过程中易降压,有利于煤层气的解吸、扩散和运移,是最有利于煤层气开发的煤级。王生维等(1995)也认为,煤中孔隙的发育除了受控于煤相之外,还受煤阶和变质作用类型的控制微裂隙的发育受煤岩成分和煤变质双重因素的控制内生裂隙的发育除了受煤岩成分影响外,还受煤变质的制约。毕建军等(2001)通过研究认为,割理的密度主要取决于煤级,一般在镜质组反射率为1.3%左右时割理密度最大割理在高煤级阶段发生闭合主要是由于次生显微组分的充填和胶合作用所致。

随着埋藏深度的增加,煤储层受到较大的地应力作用,煤储层渗透性将变差。从美国圣胡安盆地、黑勇士盆地、皮申斯盆地煤储层绝对渗透率随深度的变化趋势,可以看出这一明显趋势(图4-8)。

图4-8 美国部分地区煤储层渗透率与埋藏深度的关系

3.煤储层渗透率

煤储层的渗透率是反映煤层中气、水的流体渗透性能的重要参数,它决定着煤层气的运移和产出。它是煤储层物性评价中最直接的评价指标。煤层气勘探初期的渗透率主要有试井渗透率和煤岩(实验室)渗透率两种。在煤储层评价时,一般将试井渗透率作为评价渗透率的首选参数,而当研究区没有试井渗透率资料时,可选取煤岩渗透率作为替代参数。试井渗透率是在现场通过试井直接测得的。对煤储层而言,多采用段塞法和注水压降法(Zuber,1998)。试井渗透率最能反映储层原始状态下的渗透性,因此是比较可靠的渗透率确定方法。

据现有资料,国外的煤储层的渗透率一般较高,一般都在10×10-3μm2以上,如拉顿盆地渗透率为(10~50)×10-3μm2,黑勇士盆地为(1~25)×10-3μm2,圣胡安盆地为(5~15)×10-3μm2,粉河盆地高达(500~1000)×10-3μm2(Zuber,1998AyersJr.,2002)。与国外相比,国内的煤储层渗透率一般都低于1×10-3μm2,较好的煤储层也一般都在(1~10)×10-3μm2之间,大于10×10-3μm2的储层很少。根据《中国煤层气资源》(叶建平,1998)数据统计,我国煤储层渗透率变化于(0.002~16.17)×10-3μm2之间,平均为1.273×10-3μm2。其中:渗透率小于0.10×10-3μm2的层次占35%,介于(0.1~1.0)×10-3μm2之间的层次占37%,大于1.0×10-3μm2的层次占28%,小于0.01×10-3μm2和大于10×10-3μm2的层次均较少(图4-9)。我国的煤层渗透率以(0.1~1.0)×10-3μm2等级为主。煤层渗透率普遍较低,即使是在目前已经投入商业化开发的沁水盆地东南部的渗透率一般也都在(1~10)×10-3μm2之间。

煤岩渗透率又称实验室渗透率,是通过实验室的常规煤岩心分析获得的。相对于试井渗透率,实验室测试的渗透率有许多局限之处。最主要的是实验室测得的渗透率由于环境条件的变化往往不能反映真实情况等。首先,实验室的渗透率一般在常温、常压下测得,与煤储层的高温、高压的原始状态不符其次,实验室渗透率由于样品大小过小而降低了测试的精度。最后,即使足够大的煤样也不能够完全反映煤储层的大的外生裂隙,因此实验室渗透率可能低估煤储层的实际渗透率另一方面,煤样运送、制样过程中也可能造成人工裂隙,这时实验室渗透率值又将高估煤储层的实际渗透率。

虽然煤岩渗透率在用于储层渗透率评价时存在许多不足之处,但由于其比较容易获得,一直作为煤储层渗透率评价的主要指标。特别是对处于煤层气勘探初期且还未实施煤层气钻井的区域进行评价时,可选择煤岩渗透率作为评价储层渗透性的重要指标。对我国山西、陕西、河南、沈阳和安徽等省煤田的大量煤岩样品的渗透率测试发现,煤岩渗透率在大部分情况下可以反映煤储层渗透率的真实情况。图4-10为选取的我国11个重点煤层气矿区的实测煤岩渗透率分布的高低箱图。各矿区的渗透率平均值一般都在(0.1~1)×10-3μm2之间,部分矿区可高达1×10-3μm2以上。

图4-9 中国主要矿区(煤田)试井渗透率分布

图4-10 中国主要煤田(盆地)煤岩实测渗透率分布箱式图

对比图4-9和图4-10可以发现,各矿区的煤岩渗透率值与试井渗透率值的取值区间基本相近,且煤岩渗透率和试井渗透率具有较好的正相关关系。因此,在对煤储层渗透率进行评价时,选择以试井渗透率值为主,而煤岩渗透率值为辅,将二者有机结合起来实现对煤储层的评价。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/87491.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-03-06
下一篇2023-03-06

发表评论

登录后才能评论

评论列表(0条)

    保存