影响碳纤维强度的主要因素是什么?

影响碳纤维强度的主要因素是什么?,第1张

【摘要】: 界面对碳纤维复合材料性能的发挥起着非常重要的作用,复合材料通过界面传递载荷,可以使碳纤维与基体形成一个有效发挥综合性能的整体。在界面的研究中,提高其结合强度是改善碳纤维复合材料力学性能的关键。因此,剖析各种因素对碳纤维复合材料界面结合强度的影响,对于提高复合材料的综合性能具有十分重要的意义。本文采用扫描电镜(SEM)、X射线光电子能谱(XPS)、激光拉曼光谱(LRS)、X射线衍射(XRD)、傅立叶变换红外光谱(FTIR)以及力学性能测试等技术,考察了不同制备工艺对碳纤维结构及性能的影响,探讨了湿法纺丝制备PAN基碳纤维的电化学改性工艺以及电化学改性处理过程中碳纤维表面结构和性能的演变规律,获得了碳纤维表面除胶的合理性工艺,深入研究了碳纤维电化学改性处理、上浆剂以及基体改性对碳纤维复合材料界面结合强度的影响,提出了碳纤维电化学改性机理以及基体改性机理。 对不同工艺制备的碳纤维结构及性能进行了对比分析,结果表明:与湿法纺丝工艺制备的碳纤维相比,干喷湿纺工艺制备的碳纤维内部致密性高,轴向微孔尺寸小,表面非碳元素相对含量低。从X射线衍射来看,干喷湿纺工艺制备的碳纤维石墨层面间距d002较小,更接近于石墨单晶的层面间距;微晶堆砌厚度Lc较高,石墨网平面尺寸La较大,石墨微晶的平均堆叠层数较多,这说明采用干喷湿纺工艺制备的碳纤维具有较高的石墨化程度,其结构完整性更高。湿法纺丝和干喷湿纺工艺制备的碳纤维其表面结构基本相同,但表面形貌存在很大差异。湿法纺丝工艺制备碳纤维表面粗糙,有许多轴向沟槽,而干喷湿纺工艺制备的碳纤维表面光滑无沟槽,沟槽的存在可以增加纤维与基体间的机械铰合作用,有利于提高复合材料的界面结合强度。另外,洁净的生产环境及精细的加工设备有利于减少碳纤维的表面缺陷。 采用XPS技术研究了湿法纺丝工艺制备的PAN基碳纤维在电化学改性处理过程中表面特性随改性工艺的变化,结果表明:电化学改性初期,碳纤维表面改性效果明显。随着电化学改性处理时间的延长,变化趋势减慢,达到一定程度时趋于稳定。电解液的浓度和温度越高,电化学改性处理时间越长,电流密度越大,碳纤维表面改性效果越明显。大量电解质试验表明,NH4H2PO4对碳纤维表面电化学改性效果最佳。 采用LRS技术系统研究了湿法纺丝工艺制备的碳纤维在电化学改性处理过程中表面结构的变化,结果表明:电化学改性处理后,碳纤维表面拉曼光谱中的G线和D线交叠度减小,尺值增大,D2线与G线的比值减小,D3线与G线的比值增大。随着电化学处理时间的增加,尺值不断增大,D2线与G线的比值以及D3线与G线的比值发生一定程度的改变,但变化趋势并不明显。所有代表无序结构的拉曼谱峰积分面积总和与石墨结构积分面积之比与R值的变化趋势基本一致,它可以更全面地表征电化学处理过程中碳纤维表面结构无序性的变化,对于深入分析碳纤维电化学改性处理中表面微结构的变化规律具有重要意义。 选用高电流密度,浓度为1mol/L的NH4H2PO4为电解质,设定处理时间为4min,对碳纤维进行电化学改性处理,试验结果表明,电化学改性处理后碳纤维的表面结果和性能发生改变。碳纤维的表面结构被破坏,无序度增大,表面晶粒尺寸减小。比表面积增大,表面粗糙度增加,有利于提高碳纤维的表面极性,增大树脂的浸润性;同时更多含氧官能团的生成也有利于增大碳纤维表面与基体间的化学作用力,使得碳纤维增强树脂基复合材料的界面结合强度提高。其中,碳氧单键含量的增加对界面化学作用力的增强起主要作用。 系统研究了过度电化学改性处理对T700碳纤维和石墨纤维结构的影响,结果表明:电化学改性是一种碳纤维表面改性处理的有效方法,它仅对纤维表面产生作用,并不改变纤维的本体结构。在相同的处理条件下,碳纤维表面部分结构破坏严重,轴向沟槽消失,部分结构保持完整,且破坏是沿纤维轴向进行的,破坏区域显示出微坑形貌;石墨纤维表面基本没有变化。电化学改性处理过程中,碳纤维中非碳元素的存在是石墨片层结构破坏的主要原因,也是表面结构破坏的根源。纤维表面结合力弱的区域容易被破坏,导致表面轴向沟槽增多并加深。 采用不同上浆剂对碳纤维进行表面处理,研究了不同上浆剂对碳纤维以及复合材料界面结合强度的影响,结果表明:碳纤维经上浆剂处理后,很好地抑制了纤维的毛丝和断丝现象,而且上浆剂均匀附着于碳纤维表面,使纤维较好分散,有效地避免了纤维之间的粘连。上浆剂的种类对碳纤维复合材料的界面结合强度影响较大。日本生产的上浆剂基本可以改善碳纤维的表面润湿性,提高复合材料的界面结合强度。与进口上浆剂相比,国产上浆剂处理制备的碳纤维复合材料,其界面结合强度偏低,与普通环氧树脂的效果接近。 采用FESEM、XPS、LRS和XRD等多种分析技术对不同除胶工艺处理的碳纤维结构及性能进行了研究,结果表明:丙酮浸泡工艺对碳纤维表面上浆剂的去除效果不佳;瞬时高温处理工艺虽然可以达到部分清除上浆剂的效果,但对纤维表面结构产生较大损伤;采用氮气保护下的高温除胶处理工艺,不仅可以有效地去除碳纤维表面上浆剂,而且可以通过工艺参数的合理配置,有效抑制处理过程中碳纤维表面的氧化以及上浆剂裂解产物的残存。通过对比分析确定,氮气保护下的高温除胶工艺是碳纤维表面上浆剂去除的有效方法。 以羟基硅油为共聚改性剂对酚醛树脂基体进行改性,系统研究了基体改性对碳纤维复合材料界面结合强度及力学性能的影响,结果表明:随着羟基硅油添加量的增加,碳纤维复合材料的界面结合强度呈现先增大后减小的变化趋势,材料的弯曲强度逐渐增大,拉伸强度的变化趋势与界面结合强度的变化趋势基本一致。羟基硅油添加量不当会导致基体缺陷增加,使得复合材料界面结合性能变差,影响材料整体性能的发挥。当羟基硅油与酚醛树脂的质量百分比为2.5%时,碳纤维增强树脂基复合材料的界面结合强度最高,同时材料的拉伸强度和弯曲强度也得到改善。基体改性对复合材料界面结合强度的改善效果不如碳纤维表面改性对其效果提高明显。 适当的原料配比以及合理的制备工艺是减少碳纤维复合材料内部缺陷以及改善复合材料性能的关键因素。

石墨烯和碳纤维都是碳元素,在结晶性上,石墨烯是完全结晶材料,而碳纤维是部分结晶材料。在xrd图上,碳纤维是无法得到像石墨烯那么极为尖锐的峰的。即便是高度石墨化的沥青基纤维也不行。碳纤维里会有很多的晶体缺陷和非晶区,使得碳纤维时间久了,热转换率会严重下降,其耗电量会越来越大,同时碳纤维取暖局部,就会出现明显的不发热的现象。

简单的说,石墨烯是极其稳定,在导电导热方面。而碳纤维,因为其结晶性的特点,导致其在,导热方面,稳定性差。一般第一年使用碳纤维取暖的耗电是石墨烯的,1.3到1.5倍。到了第二年开始,耗电量应该是石墨烯的1.7到1.8倍,随着时间越久,耗电量越大。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/97004.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-03-08
下一篇2023-03-08

发表评论

登录后才能评论

评论列表(0条)

    保存