请求高手帮忙分析一张XRD图!重分酬谢

请求高手帮忙分析一张XRD图!重分酬谢,第1张

从你们实验制备的LiMnPO4(磷酸锰锂)的这张XRD谱可以看出,你们样品的晶体规整度比较统一,晶胞的尺寸是符合无机物小分子的,因为衍射峰多集中于小角度。衍射峰丰富。

下面是一些有关XRD谱的知识:

利用 X射线粉末衍射(XRD)图谱和数据,可以解析谱图获得样品的定性结论:

是不是你意想中的该物质,在新研制药品或仿制专利药已过保护期的药品的权威鉴定中常使用;

经过严格的谱线解析与计算,可以定量分析得出被鉴定物的含量比例纯度等;

上述2个应用是针对物质-化合物单质纯净物合金共熔物等的。其实也可以针对某一晶相:单一晶相的定性分析;单一晶相的定量分析;

可以解析出被鉴定物的结晶度;......

---------------------------------------

一个类似问题 和 回答如下:

-------------------------------------

怎样根据X射线衍射图测算其相数

我们前几天做了产品的X射线衍射图,但没有α、β相的值。还有能不能告诉我这些英文在X射线衍射图中怎样表示。

SCAN:3.0/85.0/0.02/0.15(sec),Cu(40kV,30mA),I(cps)=339,

PEAK:21-pts/Parabolic Filter,Threshold=3.0,Cutoff=0.1%,BG=3/1.0,Peak-top=summit

NOTE:intensity=CPS,2t(0)=0.0(deg),wavelength to compute d-spacing=1.54056Å(CU/K-alpha1)

问题补充:根据这些数据是不是能够进行测算呢,有没有什么具体的公式呢??这些英文表示什么呢??急!急!

2-Theta d(Å)BGHeight Height% Area Area%FWHM XS(Å)

13.583 6.51358 110 33.0 26.8 38.20.207639

19.136 4.63424 24 7.25.47.70.191689

20.160 4.40105 39 11.79.9 14.10.216514

20.741 4.27914 142 42.6 34.4 49.00.206560

23.099 3.84724 65 19.5 17.7 25.30.232441

23.558 3.77335 115 34.5 26.7 38.00.197586

26.641 3.34327 79 23.7 21.5 30.70.232431

27.238 3.27146 333 100.0 70.1 100.00.179678

31.159 2.86805 143 42.9 36.0 51.40.214474

-------------------------------------

关于“怎样根据X射线衍射图测算其相数”的回答如下:

SCAN:3.0/85.0/0.02/0.15(sec),Cu(40kV,30mA),I(cps)=339,

扫描:从3.0度/到85.0度/步长0.02度/用时0.15(sec),X射线Cu(40kV,30mA),I(cps)=339,最强峰强I1=339(每秒计数counts per sec)

PEAK:21-pts/Parabolic 峰数:21个/抛物线型

Filter,Threshold=3.0,Cutoff=0.1%,BG=3/1.0,Peak-top=summit 滤波,阈值=3.0,截止限=0.1%,峰顶=峰顶点

NOTE:intensity=CPS,2t(0)=0.0(deg),wavelength to compute d-spacing=1.54056Å(CU/K-alpha1) 注:强度=每秒计数,2t(0)=0.0(deg度),用于计算晶格间距d的波长=1.54056Å(CU/K-alpha1铜靶/K-alpha 1线)

布拉格定律公式:

2d sin θ = nλ,式中,λ为X射线的波长,λ=1.54056Å,衍射的级数n为任何正整数,这里一般取一级衍射峰,n=1。

当X射线以掠角θ(入射角的余角,又称为布拉格角)入射到你的晶体或部分晶体样品的某一具有d点阵平面间距的原子面上时,就能满足布拉格方程,从而测得了这组X射线粉末衍射图(资料)。

你计算时,注意:

第一列数据,是2θ 角,要除以2才是用到公式中的θ 。

第二列数据,的d,单位是Å,

第三列数据,BG,可能是背景缩写;

第四列数据,峰高,计数值,每秒计数cps=counts per sec;

第五列数据,相对峰高(%),是把最强峰作为归一标准的相对强度值;

第六列数据,峰面积;

第七列数据,相对峰面积(%);

第八列数据,FWHM-Full width at half maximum (脉冲)峰半高宽;一般用于计算的峰强度,一般使用峰高度就可以了,这是把峰都看成是常规峰。但这一项 FWHM 值可以给出一些特异峰信息,在解析时会带来特殊意义。

第九列数据,XS(Å),XS是晶粒度(Å)。

α、β相的值,要靠解析谱图、再借助查找PDF(《粉末衍射卡片集》)卡片上的标准值进行核对、鉴定、计算去获得。

参考资料:http://zhidao.baidu.com/question/122433124.html

对应于你们的XRD谱,还应该有一个如上所说的数据表。你们这个样品不是完全未知物。应该去把LiMnPO4(磷酸锰锂)的PDF(《粉末衍射卡片集》)卡片查找出来,用于核对。如果峰位、峰强都吻合,证明就是LiMnPO4(磷酸锰锂)这一种晶体!卡片上说是什么相就是什么相。如果卡片上的这一个相的所有主要峰都在你们的谱中找到,但有多余的峰;或者你们谱的某些峰强超过标准谱峰强较多,说明除了含有这一个相外还存在有其它相。把第一个主要相成分的比例计算出来、并且扣除,再去分析判断第二个较多相成分,再用峰强核对,分析判断出第二个相所含比例;如此等等,直至把所有的相分析判断出来。

这是有意向之物、利用PDF(《粉末衍射卡片集》)卡片作的定性定量分析。如果是未知的,分析解析是很复杂的!不是一般篇幅文字能够说清楚的。需要借助图解、公式等,而公式的输入在这里就很难做到;多于一张插图在这里上传也是有问题的。你必须借阅一些参考书,学中解析、解析中学习。

磷酸铁锂电池作为锂离子二次电池,循环寿命在2000次以上,比锰酸锂电池长很多。2.磷酸铁锂电池600还算稳定,锰酸锂电池就差很多了。3.锰酸锂电池贵,磷酸铁锂电池就低很多。4.磷酸亚铁锂过充到100%不会起火爆炸;锂电池到了规定值就会放气膨胀。

电动知家,一个有价值的微信公众号!

更多新能源电动汽车、无人驾驶最新行业资讯和专业知识,请关注“电动知家”微信公众号

自从英国曼彻斯特大学物理学家安德烈·海姆(Andre Geim)和康斯坦丁·诺沃肖洛夫(Konstantin Novoselov)二人因为 “二维石墨材料的开创性实验”共同获得2010年诺贝尔物理学奖之后,任何与石墨烯有关的新闻或者研究成果都受到了人们极大的关注。那么石墨烯锂电池倒底可能会有哪些出众的优点呢?比如一直盛传的移充满电的锂电池,真是让观众对这项技术的应用充满了期待。

图1 石墨烯材料结构

笔者也经常会问公司的研发大牛:“石墨烯现在倒底可以量产吗?石墨烯锂电池倒底有没有传说中的那么厉害,几秒就可以充满电?”,其实对于一个专业人员常常只能以呵呵来做答,像电我这种一点儿电化学或者材料学背景都没有的人,也很难听得懂那些晦涩的专业理论。

笔者接合专业人士的解答与多方面的资料整理出以下内容供大家参阅,在技术日新月异的今天,真不好说那些先进的思想与理念,现在看来是像是在炒作,说不定那天就会变成现实。

什么是石墨烯

石墨烯(Graphene)是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料。石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光导热系数高达5300 W/m·K,高于碳纳米管和金刚石,常温下其电子迁移率超过15000 cm2/V·s,又比纳米碳管或硅晶体高,而电阻率只约10-8 俜m,比铜或银更低,为世上电阻率最小的材料。

最薄、最坚硬、最导热、最导电,这所有的光环都在告诉人们,石墨烯是一种多么神奇的材料啊!但是笔者要提醒的是,国际上对Graphene的定义是1-2层的nanosheet才能称之为是Graphene,并且只有没有任何缺陷的石墨烯才具备这些完美特性,而实际生产的石墨烯多为多层且存在缺陷。

目前生产方法及品质

机械剥离法:当年Geim研究组就是利用3M的胶带手工制备出了石墨烯的,但是这种方法产率极低而且得到的石墨烯尺寸很小,该方法显然并不具备工业化生产的可能性。

化学气相沉积法(CVD):化学气相沉积法主要用于制备石墨烯薄膜,高温下甲烷等气体在金属衬底(Cu箔)表面催化裂解沉积然后形成石墨烯。CVD法的优点在于可以生长大面积、高质量、均匀性好的石墨烯薄膜,但缺点是成本高工艺复杂存在转移的难题,而且生长出来的一般都是多晶。

氧化-还原法:氧化-还原法是指将天然石墨与强酸和强氧化性物质反应生成氧化石墨(GO),经过超声分散制备成氧化石墨烯,然后加入还原剂去除氧化石墨表面的含氧基团后得到石墨烯。氧化-还原法制备成本较低容易实现,成为生产石墨烯的最主流方法。但是该方法所产生的废液对环境污染比较严重,所制备的石墨烯一般都是多层石墨烯或者石墨微晶而非严格意义上的石墨烯,并且产品存在缺陷而导致石墨烯部分电学和力学性能损失。

溶剂剥离法:溶剂剥离法的原理是将少量的石墨分散于溶剂中形成低浓度的分散液,利用超声波的作用破坏石墨层间的范德华力,溶剂插入石墨层间,进行层层剥离而制备出石墨烯。此方法不会像氧化-还原法那样破坏石墨烯的结构,可以制备高质量的石墨烯。缺点是成本较高并且产率很低,工业化生产比较困难。

此外,石墨烯的制备方法还有溶剂热法、高温还原、光照还原、外延晶体生长法、微波法、电弧法、电化学法等,这些方法都不及上述四种方法普遍。

图2 可量产石墨烯

在此,笔者介绍一个新名词:还原氧化石墨烯,即RGO。一般来说,氧化石墨烯是由石墨经强酸氧化,然后再经过化学还原或者热冲击还原得到。目前市场上所谓的“石墨烯”绝大多数都是通过氧化-还原法生产的氧化石墨烯,石墨片层数目不等,表面存在大量的缺陷和官能团,无论是导电性、导热性还是机械性都跟获得诺贝尔奖的石墨烯是两回事。严格意义上而言,它们并不能称为 “石墨烯”。

当前 “石墨烯电池”这一名词很火热。事实上,国际锂电学术界和产业界并没有“石墨烯电池”这个提法。看来“石墨烯锂电池”还真是个炒出来的概念。

根据美国Graphene-info这个比较权威的石墨烯网站的介绍,“石墨烯电池”的定义是在电极材料中添加了石墨烯材料的电池。在笔者看来,这个解释显然是误导。根据经典的电化学命名法,一般智能手机使用的锂离子电池应该命名为“钴酸锂-石墨电池”。

图3 石墨烯微型超级电容器

之所以称为“锂离子电池”,是因为SONY在1991年将18650锂离子电池投放市场的时候,考虑到经典命名法太过复杂一般人记不住,并且充放电过程是通过锂离子的迁移来实现的,体系中并不含金属锂,因此就称为“Lithium ion battery”。最终“锂离子电池”这个名称被全世界广泛接受,这也体现了SONY在锂电领域的特殊贡献。

目前,几乎所有的商品锂离子电池都采用石墨类负极材料,在负极性能相似的情况下,锂离子电池的性能很大程度上取决于正极材料,所以现在锂离子电池也有按照正极来称呼的习惯。比如,磷酸铁锂电池(BYD所谓的“铁电池”不在笔者讨论范畴)、钴酸锂电池、锰酸锂电池、三元电池等,都是针对正极而言的。

石墨烯在锂电池中可能(仅仅是可能性)的应用领域

负极:

1、石墨烯单独用于负极材料

2、与其它新型负极材料,比如硅基和锡基材料以及过渡金属化合物形成复合材料

3、负极导电添加剂。

正极:主要是用作导电剂添加到磷酸铁锂正极中,改善倍率和低温性能也有添加到磷酸锰锂和磷酸钒锂提高循环性能的研究。

石墨烯功能涂层铝箔,其实际性能跟普通碳涂覆铝箔(A123联合汉高开发)并无多少提高,反倒是成本和工艺复杂程度增加不少,该技术商业化的可能性很低。

从上面的分析可以很清楚地看到,石墨烯在锂离子电池里面可能发挥作用的领域只有两个:直接用于负极材料和用于导电添加剂。

图4 石墨烯包覆锰酸锂工艺示意图

石墨烯单独用做锂电负极材料的可能性

纯石墨烯的充放电曲线跟高比表面积硬碳和活性炭材料非常相似,都具有首次循环库仑效率极低、充放电平台过高、电位滞后严重以及循环稳定性较差的缺点,这些问题其实都是高比表面无序碳材料的基本电化学特征。

石墨烯的振实和压实密度都非常低,成本极其昂贵,根本不存在取代石墨类材料直接用作锂离子电池负极的可能性。既然单独使用石墨烯作为负极不可行,那么石墨烯复合负极材料呢?

石墨烯与其它新型负极材料,比如硅基和锡基材料以及过渡金属化合物形成复合材料,是当前“纳米锂电”最热门的研究领域,在过去数年发表了上千篇paper。复合的原理,一方面是利用石墨烯片层柔韧性来缓冲这些高容量电极材料在循环过程中的体积膨胀,另一方面石墨烯优异的导电性能可以改善材料颗粒间的电接触降低极化,这些因素都可以改善复合材料的电化学性能。

但是,并不是说仅仅只有石墨烯才能达到改善效果,笔者的实践经验表明,综合运用常规的碳材料复合技术和工艺,同样能够取得类似甚至更好的电化学性能。比如Si/C复合负极材料,相比于普通的干法复合工艺,复合石墨烯并没有明显改善材料的电化学性能,反而由于石墨烯的分散性以及相容性问题而增加了工艺的复杂性而影响到批次稳定性。

如果综合考量材料成本、生产工艺、加工性和电化学性能,笔者认为,石墨烯或者石墨烯复合材料实际用于锂电负极的可能性很小产业化前景渺茫。

图5 石墨烯负极材料

石墨烯用于导电剂的可能性

现在锂电常用的导电剂有导电炭黑、乙炔黑、科琴黑,Super P等,现在也有电池厂家在动力电池上开始使用碳纤维(VGCF)和碳纳米管(CNT)作为导电剂。

石墨烯用作导电剂的原理是其二维高比表面积的特殊结构所带来的优异的电子传输能力。从目前积累的测试数据来看,VGCF、CNT以及石墨烯在倍率性能方面都比Super P都有一定提高,但这三者之间在电化学性能提升程度上的差异很小,石墨烯并未显示出明显的优势。

那么,添加石墨烯有可能让电极材料性能爆发吗?答案是否定的。以iPhone手机电池为例,其电池容量的提升主要是由于LCO工作电压提升的结果,将上限充电电压从4.2V提升到目前i-Phone 6上的4.35V,使得LCO的容量从145 mAh/g逐步提高到160-170mAh/g (高压LCO必须经过体相掺杂和表面包覆等改性措施),这些提高都跟石墨烯无关。

也就是说,如果你用了截止电压4.35V容量170mAh/g的高压钴酸锂,你加多少石墨烯都不可能把钴酸锂的容量提高到180mAh/g,更别说动不动就提高几倍容量的所谓“石墨烯电池”了。添加石墨烯有可能提高电池循环寿命吗?这也是不可能的。石墨烯的比表面积比CNT更大,添加在负极只能形成更多的SEI而消耗锂离子,所以CNT和石墨烯一般只能添加在正极用来改善倍率和低温性能。

但是,石墨烯表面丰富的官能团就是石墨烯表面的小伤口,添加过多不仅会降低电池能量密度,而且会增加电解液吸液量,另外一方面还会增加与电解液的副反应而影响循环性,甚至有可能带来安全性问题。那么成本方面呢?目前石墨烯的生产成本极其昂贵,而市场上所谓的廉价“石墨烯”产品基本上都是氧化石墨烯。

即便是氧化石墨烯成本也高于CNT,而CNT的成本又比VGCF高。而且在分散性和加工性方面,VGCF比CNT和石墨烯更容易操作,这正是为什么昭和电工的VGCF正逐渐打入动力电池市场的主要原因。可见石墨烯在用作导电添加剂方面,目前跟CNT和VGCF在性价比方面并没有优势可言。

当前国内石墨烯的火热形势,让笔者联想到了十几年前的碳纳米管(CNT)。如果对比石墨烯和CNT,我们就会发现这两者有着惊人的相似之处,都具有很多几乎完全一样的“奇特的性能”,当年CNT的这些“神奇的性能”现在是完全套用在了石墨烯身上。CNT是在上世纪末开始在国际上火热起来的,2000-2005年之间达到高潮。CNT据说功能非常之多,在锂电领域也有很多“独特性能”。

但是二十多年过去了,至今也没看到CNT的这些“奇特的性能”在什么领域有实实在在的规模化应用。在锂电方面,CNT也仅仅是用作正极导电剂这两年在LFP动力电池里面开始了小规模的试用(性价比仍不及VGCF),而LFP动力电池已经注定不可能成为电动汽车主流技术路线。

相比于CNT,石墨烯在电化学性能方面与之非常相似并无任何特殊之处,反倒是生产成本更高,生产过程对环境污染更加严重,实际操作和加工性能更加困难。根据自己多年的锂电研发和生产经验,笔者并不认为石墨烯会在锂离子电池领域有多少实际应用价值,当前所谓的“石墨烯电池”纯属炒作。对比CNT和石墨烯,笔者要说的是“历史总是何其相似”!

图6 碳纳米管负极料

石墨烯的真正可能的应用前景猜测

未来石墨烯在锂离子电池上的应用前景微乎其微的。相比于锂离子电池,笔者认为石墨烯在超级电容器尤其是微型超级电容器方面的应用前景似乎稍微靠谱一点点,但是我们仍然要对一些学术界的炒作保持警惕。

其实,看了很多这些所谓的“学术突破”, 你会发现很多教授在其paper里有意无意地混淆了一些基本概念。目前商品化的活性炭超级电容器能量密度一般在7-8 Wh/kg,这是指的是包含所有部件的整个超级电容器的器件能量密度。而教授们提到的突破一般是指材料的能量密度,所以实际中的石墨烯超电远没有论文中提到的那么好。

相对而言,微型超级电容器的成本要求并没有普通电容器那么严格,以石墨烯复合材料作为电化学活性材料,并选择合适的离子液体电解液,有可能实现制备兼具传统电容器和锂离子电池双重优势的储能器件,在微机电系统(MEMS)这样的小众领域可能(仅仅只是可能)会有一定的应用价值。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/100282.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-03-09
下一篇2023-03-09

发表评论

登录后才能评论

评论列表(0条)

    保存