问题二:验证性因子分析的定义 在社会调查研究构成中,研究者首先开发调查问卷。对应于每一个研究者所感兴趣的理论变量,问卷中往往有多个问题。比如,研究者对顾客的忠诚度感兴趣,忠诚度可能用购买频率、主观评估、消费比例等多个问题来衡量。这个理论变量就是因子,这些个别问题是测度项。验证性因子分析就是要检验购买频率、主观评估、消费比例是否真的可以反映忠诚度。与验证性因子分析相对的是探索性因子分析。在探索性因子分析中,比如,因为我们想让数据“自己说话”,我们即不知道测度项与因子之间的关系,也不知道因子的值,所以我们只好按一定的标准(比如一个因子的解释能力) 凑出一些因子来,再来求解测度项与因子关系。探索性因子分析的一个主要目的是为了得到因子的个数。探索的因子分析有一些。第一,它假定。在实际研究中,我们往往会假定一个因子之间没有因果关系,所以可能不会影响另外一个因子的测度项。第二,探索性因子分析假定测度项残差之间是相互独立的。实际上,测度项的残差之间可以因为共同方法偏差、子因子等因素而相关。第三,探索性因子分析强制所有的因子为独立的。这虽然是求解因子个数时不得不采用的机宜之计,却与大部分的研究模型不符。最明显的是,自变量与因变量之间是应该相关的,而不是独立的。这些局限性就要求有一种更加灵活的建模方法,使研究者不但可以更细致地描述测度项与因子之间的关系,而且并对这个关系直接进行测试。而在探索性因子分析中,一个被测试的模型(比如正交的因子) 往往不是研究者理论中的确切的模型。验证性因子分析 (confirmatory factor *** ysis) 的强项正是在于它允许研究者明确描述一个理论模型中的细节。那么一个研究者想描述什么呢?因为测量误差的存在,研究者需要使用多个测度项。当使用多个测度项之后,我们就有测度项的“质量”问题,即效度检验。而效度检验就是要看一个测度项是否与其所设计的因子有显著的载荷,并与其不相干的因子没有显著的载荷。当然,我们可能进一步检验一个测度项工具中是否存在共同方法偏差,一些测度项之间是否存在“子因子”。这些测试都要求研究者明确描述测度项、因子、残差之间的关系。对这种关系的描述又叫测度模型 (measurement model)。对测度模型的检验就是验证性测度模型。对测度模型的质量检验是假设检验之前的必要步骤。
问题三:菜鸟求教,验证性因子分析拟合指标的关系 主成分分析属于探索性因子分析(EFA),和验证性因子分析(CFA)不一样,它们基于不同的原理和计算方法,验证性因子分析往往更容易出现比较好的结果,因为它是在你设定好因子结构的情况下去检验这一种结构和你的数据是否拟合,不一定可以拟合你数据的模型只有一种,但只要你的这一种拟合指标好就OK,而探索性因子分析是完全靠数据说话,数据驱动,这当然更不容易获得满意的结果。如果你主成分分析结果不好,可以尝试直接用验证性因子分析,若是获得满意的结果,可以考虑报告验证性因子分析的结果而不报告主成分分析。
问题四:spss 如何做验证性因子分析 spss20以上纳入了amos,就可以直接做了
我替别人做这类的数据分析蛮多的
问题五:spss 如何做验证性因子分析? spss不能做验证性因子分析哦,要用spss里面的amos模块才行
可以做专业数据分析哦
问题六:如何用验证性因子分析共同方法偏差 我使用的Lisrel,设定 1 个公因子数,使研究中的所有测量项目负荷于这一共同因子,如果模型拟合良好就可以说明存在一个可以解释大多数变异的公共因子。如果分析结果发现所用测量项目负荷于共同因子时的各项拟合指数都不好,则说明研究的共同方法偏差属于可接受范围。
问题七:验证性因子分析 共同方法变异 怎么做 我使用的Lisrel,设定 1 个公因子数,使研究中的所有测量项目负荷于这一共同因子,如果模型拟合良好就可以说明存在一个可以解释大多数变异的公共因子。如果分析结果发现所用测量项目负荷于共同因子时的各项拟合指数都不好,则说明研究的共同方法偏差属于可接受范围。
问题八:如何用 SPSS 进行验证性因子分析 SPSS 不能进行验证性因子分析,只能进行探索性因子分析
用别的软件啊:Amos、Lisrel、Mplus等
问题九:怎么用AMOS对问卷进行验证性因子分析 用amos来做比较好
构建好模型之后运行分析,根据拟合指数以及载荷等判断即可。(南心网 Amos效度分析)
问题十:如何用amos做验证性因子分析 验证性因子分析主要探讨潜变量之间的相关关系而不是因果关系,在SEM中,模型构建分为两块,一块是测量模型,一块是结构模型,测量模型是测量潜变量和观测指标的关系模型,而结构模型则是测量潜变量之间的关系模型;所谓验证性因子分析就是主要探讨结构模型中的相关关系,操作很简单,你把潜变量之间用双箭头联系起来就可以了,当然,这里要注意一点,如果根据理论或者经验推测某两个潜变量之间完全不存在相关的话,可以不用双箭头联系;另外,AMOS里面的 *** ysis properties 模块设置中有个output选项,你点击critical ratios for difference 选项(打勾),运行数据后在text output的报表中可以根据临界比率(p是否小于.05)来判断潜变量之间的关系强度是否显著,如果小于临界比率,建议取消对应的潜变量双箭头。
SEM简单介绍,以下资料来源
因果关系:SEM一般用于建立因果关系模型,但是本身却并不能阐明模型的因果关系。
一般应用于:测量错误、错漏的数据、中介模型(mediation model)、差异分析。
历史:SEM 包括了 回归分析,路径分析(wright, 1921),验证性因子分析(confirmatory factor analysis)(Joreskog, 1969).
SEM也被称为 协方差结构模型(covariance structure modelling),协方差结构分析和因果模型。
因果关系:
究竟哪一个是“真的”? 在被假设的因果变量中其实有一个完整的因果链。
举一个简单的例子: 吃糖果导致蛀牙。这里涉及2个变量,“吃糖果”和“蛀牙”,前者是因,后者是果。 如果上一个因果关系成立,那将会形成一个因果机制,也许会出现这样的结构:
3. 这时还有可能出现更多的潜在变量:
这里我又举另外一个例子,回归模型
在这里,回归模型并不能很好的描述出因果次序,而且也不能轻易的识别因果次序或者未测量的因子。这也是为什么在国外学术界SEM如此流行的原因。
我们在举另外一个例子“路径分析”
路径分析能让我们用于条件模型(conditional relationships),上图中的模型是一种调解型模型或者中介模型,在这里Z 是作为一个中介调节者同时调节X和Y这两个变量的关系。
在这里我们总结一下:
回归分析简单的说就是:X真的影响Y 吗?
路径分析:为什么/如何 X 会影响Y? 是通过其他潜在变量Z 来达到的吗?例子:刷牙(X)减少蛀牙(Y)通过减少细菌的方法(Z)。------测量和测试中介变量(例如上图中的Z变量)可以帮助评估因果假设。
在这里要提一下因素模型(factor model)
在这个模型当中,各个变量有可能由于受到未被观察到的变量所影响,变得相互有内在的联系,一般来说那些变量都很复杂、混乱,而且很多变量是不能直接被观察到的。
举个例子:“保龄球俱乐部的会员卡”和“本地报纸阅读”,是被观察到的变量,而“社会资产”则是未被观察到的变量。另一个例子:“房屋立法”和“异族通婚”是被观察到的变量,而“种族偏见”是未被观察到的变量。
相互关系并不完全由被观察到的变量的因果关系所导致,而是由于那些潜在的变量而导致。
这些被观察到变量(y1--y4)也有可能由一个潜在的变量(F)所影响。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)