1:梳理建模流程(因子分析)如果出现模型拟合大面积不达标时,首先应该从模型本身找原因。结构方程模型包括测量模型和结构模型,而我们正常情况下只会关注于结构模型即影响关系等,而完全忽略掉还有测量模型。如果说测量模型不好,那拟合指标肯定不会好。但是测量模型是我们容易忽视的地方。因而第一点是查看测量模型是否有问题。
2:调整模型(MI指数调整和手工调整)如果出现模型大面积不达标,相信通过梳理建模流程,删除不合理项之后,可以让很多指标均正常。本小节说明第二种调整模型的方式,即调整模型。调整模型包括两种,一是MI指数调整和手工模型调整。
结构方程模型基本原理:
SEM是数据分析的一种特殊形式,从一个指定了多变量间(假定的)相互关系的模型开始,变量间的关系被形式化为一组方程,用于测试这些变量并量化它们之间的关系。
结构方程模型(Structural equation modeling,SEM)是一种融合了因素分析和路径分析的多元统计技术。它的强势在于对多变量间交互关系的定量研究。在近三十年内,SEM大量的应用于社会科学及行为科学的领域里,并在近几年开始逐渐应用于市场研究中。图中的Xn是待构建的测量指标,λ值表示各指标对上级指标的影响大小,ζn和δn表示误差,是受模型外因素影响的部分,如价格满意度等其他因素。由上图可以看出,服务方面的感知满意度对总体满意度的影响远高于产品满意度,再结合服务满意度的得分情况,可以得出结论,该通信分公司应着重改善服务满意度。
顾客满意度就是顾客认为产品或服务是否达到或超过他的预期的一种感受。结构方程模型(SEM)就是对顾客满意度的研究采用的模型方法之一。其目的在于探索事物间的因果关系,并将这种关系用因果模型、路径图等形式加以表述。
SEM模型的基本框架图册在模型中包括两类变量:一类为观测变量,是可以通过访谈或其他方式调查得到的,用长方形表示一类为结构变量,是无法直接观察的变量,又称为潜变量,用椭圆形表示。
各变量之间均存在一定的关系,这种关系是可以计算的。计算出来的值就叫参数,参数值的大小,意味着该指标对满意度的影响的大小,都是直接决定顾客购买
与否的重要因素。如果能科学地测算出参数值,就可以找出影响顾客满意度的关键绩效因素,引导企业进行完善或者改进,达到快速提升顾客满意度的目的。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)