航空发动机被称为研发制造难度最大的现代工业造物,这么难造吗?

航空发动机被称为研发制造难度最大的现代工业造物,这么难造吗?,第1张

航空发动机(尤其是军用)要在非常有限的体积内追求极致的性能,需要更尖端的材料和更精细的设计,材料能满足几百至几千小时的稳定工作就可以了。三转子(三轴)发动机的是英国罗尔斯·罗伊斯,比如罗罗以前的RB211系列和目前的瑞达系列。

法国没有能力搞先进航空发动机,目前有能力搞先进航空发动机的只有两个国家三个公司,即英国的罗罗,美国的GE和普惠,效率,推力和涵道比,增压比,涡轮前温度都有匹配关系。涡轮前温度越高,匹配的总增压比会提高,民用大涵道比发动机涵道比尽量增大,匹配的风扇亚比会降低,军用小涵道比是尽量提高涡轮前温度,它的要求和民用不同。感觉已经到了现有常用材料的瓶颈了,镍基合金承载温度从700升到1000℃提升的比较快,到1100℃再往上就很难了。1400℃是镍基合金的熔点范围,现在已经0.8Tm了,更高的温度只能指望陶瓷叶片或复合材料叶片了。

现在的航空发动机有离心式和轴流式

地面燃气轮机希望实现高效率、低成本、耐久性和长时可靠性(温度相对低一点,要求材料在更长时间的(10万小时级)稳定运行),对体积要求相对低一点。地面燃气轮机工况相对稳定(比如电站),材料能使用更长的时间;而航发工况更复杂(起飞、爬升、巡航、剧烈机动)导致材料失效更快。这两个领域要做好的话,都需要几十年的持续投入和积累。如果德国和日本要搞先进航发的话,不少东西也是得从头开始。战后德国的人才流失严重,国防工业也被压制。此外也存在需求不足的因素。毕竟欧洲要直面苏联的压力,MD在欧洲防务是很上心的,欧洲人只要想要,总能从美国人那里搞到配备先进航发的战斗机。德国虽然在燃机领域颇有建树,但是航发和燃机的差异还是很大的,没有足够的驱动力,几大巨头们也不愿走这条无止境烧钱的路。

MTU利用自己在燃机领域积累的雄厚实力,参加了不少航发的国际合作,大多负责压气机和低压涡轮部分;核心机一般都是交给美英的合作中完成,这也算是术业有专攻吧。台风配备的EJ200好像也是RR负责核心机,德国人搞压气机。空客的航发都是固定的几家采购,RR(trent系列)、GE和PW(GP系列)或者一些合作成立的公司(像IAE的V2500),德国可能还是以参与为主。自然科学,和工业是可以积累一步一步往前走,所谓后人站在巨人肩膀上。接下来二流的人才从事商业贸易,三流的进了IT行业。那搞技术的,认清形势以后还能坚持的就只有四流的了。最后的最后,把科研落实到生产的现场工人,他们是被很多人看不起的,航发却要通过他们的双手生产,组装,调试。

这长图片更直观

我个人认为航发追求的是极端恶劣条件下(高温高压高应力)保证长期的、稳定的、极端的性能。这个高温就难倒了很多领域:半导体工业有很多技术难点,但是常温或100~200℃左右的问题起码可以通过各种常见设备(SEM,TEM,FIB,3DAP等等)进行研究,实验方法也是成熟的,即使是原位研究是可能的。而在航发中,如高速(甚至是超音速)气流中的燃烧问题、材料在极高温度下(1000℃)的蠕变以及相变过程的原位研究等就是用现有手段难以实现的。

对物理过程的认识和工程方面的实践都存在巨大困难的前提下,还要不断推进技术前沿,我认为是能称得上最难。准确来说是风扇带动的外涵气流产生了超过整机80%以上的推力,单个叶片上的气动载荷超过2吨,而工作时的离心载荷更是达到13吨以上,而GE90-115B的复合材料+钛合金包边叶片更是作为工艺品在博物馆展出(具体哪个博物馆想不起名字了),而作为GE90的后辈GEnx将风扇叶片减少至19片,其单片叶片所承受的气动载荷更大(具体数值没有查过)。

马赫数较低的阶段,涡扇发动机效率高

涡轮其实是个能量转换的部件,就像水轮机的涡沦把水流的势能转换为发电机转子的动能再来发电。航发涡轮是把燃油燃烧产生的热能转化为涡轮旋转的动能,继而带动风扇和压气机产生推力。涡轮温度越低,燃油的热能散失的越多,转化效率越低,所以这是没办法的事情。合金叶片对高温的承载能力有限,可不可以换种思路,将材料的研究着力于耐高温涂料上,高温涂料经过特殊的工艺处理能达到很好的效果,可以减少对金属材料的依赖,转而在涂料材料上去的巨大突破。目前来看,未来可能的替代材料是陶瓷基复合材料(CMC),它的温度能比金属高很多,甚至不需要涂层,但是还有很多问题需要解决。据说GE搞过实验,结果我还不了解。这应该还是很有希望的一条路。

发动机材料不是任何东西都离不开铁,而是铁作为杂质不太好完全消除,而且现在国内的镍基高温合金国军标铁含量也已经可以降低到0.05%,实际产品铁含量更低。而且也不是所有的镍基高温合金都不含铁,比如发动机中用量最大的IN718合金,是含有18%的铁,因为铁便宜。还有,发动机材料选用镍基而不是铁基最主要的原因并不是铁的蠕变温度问题,而是因为铁会发生同素异构转变,镍则不会。此外,钴基材料是更好的高温结构材料,但钴价格太昂贵,所以综合来说镍基材料是最优的。航空发动机为了进气顺畅,是没有致密滤网这种东西的,最多在入口安装惯性或者离心分离器。只有地面装备的燃气轮机如M1 Abrams装备的AGT1500燃气轮机,出于使用环境需要,才会加装滤网,不过M1每次大修发动机时,会发现许多压气机叶片都被没过滤干净的沙粒打出凹坑或者边缘受损。

早期的风扇是窄弦风扇,由实心钛合金锻造而成

俄罗斯(前苏联)很擅长利用系统工程理论,将一个个不够先进的零部件整个成为整体性能突出的产品,最典型的莫过于前苏联米格25歼击机。和欧美同类军工产品相比,俄罗斯的相关产品具有易于维护,粗犷的特点。不能说精良的、精密的就一定是好的,各有各的优点。二战时期的苏德战场将两种风格的优缺点暴露无遗:德式坦克(虎式、豹式等)做工十分精良,制造工艺在当时相当先进,但对维护的要求很高,产量低,在恶劣的苏联冬季气候中无法有效发挥自身的效力;反观苏式坦克(如T-34),结构简单,可利于大规模制造,操作更简单,斯大林格勒拖拉机厂的工人在生产出一台T-34后自己就驾驶着上战场了。随着战事的不断进行,德军装备战损严重,不能得到及时补充,而苏军的装备源源不断涌向战场,最后德军被活活拖垮。 

所以,极端追求设备的先进性成为很多人的误区,如何是现有设备发挥最大效力可能是需要重点解决的问题。飞天巡洋,动力先行,航发技术关乎国家军事力量,是各国最精尖端技术的集合,其面临的问题之广之繁之困难,试验成本之高是难以想象的,比如涡喷发动机燃烧室温度越高性能越好,但哪种材料怎样处理可以在如此高温下的使用就成为了绝对屏障,因为不可能去穷举试验。航发看似粗旷实则精密之极。

航发和燃气轮机的做功过程是布雷顿循环

开发新材料的脚步从未停下,只是在这种环境下满足要求的材料确实比较难开发。现在也有脉冲爆震和超燃冲压发动机的研究,但是在跨音速段,涡扇确实是非常有优势。希望以后能有反重力引擎吧。内流空气系统对维持发动机瞬态工作条件的稳定十分重要,如果稍有闪失就可能导致部件局部过热或者零件间隙偏差过大进而影响性能甚至导致安全事故。钛合金一般用在风扇和压气机叶片,工作温度比较低,正常情况下不会发生钛火。我以前看过一篇关于钛火的论文,主要原因一方面是外物撞击等造成的剧烈摩擦、冲击导致压气机钛合金叶片发生钛火;另一方面就是喘振等导致高温气体从燃烧室反向冲到压气机,导致叶片发生钛火。

为了提高航空发动机性能,RR搞的三转子发动机,pw搞的是齿轮传动,目的都是解藕中压涡轮或低压涡轮与风扇或中压压气机的转速(传统设计,他们是在一根轴上)。大函道比发动机风扇要求叶尖尽量不超音,而风扇直径很大,所以风扇转速不能太高,否则效率恶化。低压涡轮增好相反,转速越高效率越高。一个绳子栓了两蚂蚱,只能互相妥协。我比较关心航发的轴承使用和维护,以现在高氮合金钢轴承(内外圈)氮化硅(陶瓷球滚动体)还是无法满足航发的实际工况温度要求。

那就需要润滑系统的补充,首先是满足高速、高温、高负载(高扭矩)能形成良好油膜,其次需要润滑油交换带走热量,并冷却后输回(油路循环系统)。轴流式更适合多级排列,提高压气比,但是相应的就出现了空气倒流的可能,所以引入了可调静止叶片的概念,和放气活门的概念防止喘震,另外n1 n2转子的速度匹配也要精确控制,因为n1可以认为空转,而n2却要带动其他附件转动,所以转子间的速度匹配也十分困难,就更不用说Rb211及其后来的三转子系列了,所以能搞三转子技术的公司很少。

压气机采用转子+静子的结构

但为什么一定要搞三转子呢?因为三转子相对于2转子压气机的压缩过程更平滑,更加不容易喘震、也就是说可以提高压气比,从而提高涡轮钱燃气总压,提高推力,换句话说,如果难度不大,转子越多可能从某一角度说,发动机将会越好。

航空发动机经历了活塞,涡喷,涡扇三代了,涡扇的潜力也基本到头了,新一代超燃冲压以及爆轰发动机我们和西方站在同一起跑线上,虽然我们基础方面还是会差一点,但是靠着集中力量办大事的优势,下一代发动机上和美英比肩还是很有可能的。

杜鹃花的叶形多变,有椭圆形、卵形、披针形、倒卵形和菱形等。有些叶片背面被棕色、银灰色或白色毛被;有的种类被鳞片;有些则光滑无毛。叶大多为互生,有时为近轮生;常绿或落叶。

杜鹃花叶片不仅在形状上有较大的变化,而且大小也相差得惊人。大叶类如凸尖杜鹃,叶长20~70厘米,宽8~30厘米,叶片稍小一点的种类如魁斗杜鹃(R.praestans)、圆头杜鹃(R.semnoide)、宽柄杜鹃(R.rothschildii)的叶片长可达30厘米,这些是比较知名的大叶类杜鹃。

小叶类杜鹃如鳞腺杜鹃(R.lepidotum)的叶片长0.4~2.6厘米,宽0.2~1.3厘米,与同属的大叶类杜鹃花的叶片比较起来约有200倍的差别。

杜鹃花的叶片大小悬殊如此之大,即使同一种杜鹃在同一产地不同的生境也有很大差别,如大白花杜鹃,生长在阳坡的叶片就比生长在阴坡的小。

楼主应该是城里人吧,这是水黾

水黾是水生半翅目类昆虫, 半翅目,水黾科。学名:Aquarlus elongatus栖息环境:栖息于静水面或溪流缓流水面上。外形特征:身体细长,非常轻盈;前脚短,可以用来捕捉猎物;中脚和后脚很细长,长着具有油质的细毛,具有防水作用。体色黑褐色,体长约22mm。

中文学名: 水黾

别称: 水马、水蜘蛛、水较剪

界: 动物界

门: 节肢动物门

纲: 昆虫纲

亚纲: 有翅亚纲

目: 半翅目

亚目: 异翅亚目

科: 黾蝽科

目录

基本信息

食物

栖息地

生存习性

动物形态

性味

功用主治

选方

黾蝽科

水黾轻功

书面解释

水黾的腿

浮水原因基本信息

食物

栖息地

生存习性

动物形态

性味

功用主治

选方

黾蝽科水黾轻功书面解释水黾的腿浮水原因展开 编辑本段基本信息

水黾是水生半翅目类昆虫, 半翅目,水黾科 水黾

汉语拼音:shuǐ mǐn 科别:水黾科 别名:水母鸡 水板凳 水拖车 学名:Aquarlus elongatus 栖息环境:栖息于静水面或溪流缓流水面上。 外形特征:身体细长,非常轻盈;前脚短,可以用来捕捉猎物;中脚和后脚很细长,长着具有油质的细毛,具有防水作用。体色黑褐色,体长约22mm。

编辑本段食物

落水的小虫体液或死鱼体。吃食的时候,嘴成管状,吸食。

编辑本段栖息地

水黾

通常群栖,在我国南方部分地区经年可见。水黾的雌虫产卵时会把卵产于植物或水下的枯枝败叶上,卵孵化後若虫先沉入水底,不久即浮向水面,随著其他个体活动,在水面上活动的速度很快,雌虫产卵后不久死去。 水黾是一种在湖水、池塘、水田和湿地中常见的小型水生昆虫,身长大约1厘米,可在水面划行。它有6条细长的腿,足上有纤毛。

编辑本段生存习性

水黾

水黾的种类不同,大小也不一样,一只中等大小的水黾重约30毫克,比水轻,所以,它在水面上行走时,不会沉入水中。 此外,水黾足的附节上,生长着一排排不沾水的毛,所以,与足接触的那部分水面会下凹,但它的足尖不会冲破表面张力。水黾长有三对足,三对足的分工也很明确,前足用来捕食,中足用来划分和跳跃,后足用来在水面滑行,这样它就可以在水面上自由自在的行动了。 但是,如果往水里加一点中性洗涤剂,就会削弱水的表面张力,这时,走在水面的水黾足上的毛被沾湿,足冲破了表面张力而穿入水中,水黾就会沉入水中,当水黾沉下去后,由于表面张力的作用,水黾就再也浮不上来了。 小型水生昆虫水黾被喻为“池塘中的溜冰者”,因为它不仅能在水面上滑行,而且还会像溜冰运动员一样能在水面上优雅地跳跃和玩耍。它的高明之处是,既不会划破水面,也不会浸湿自己的腿。水黾不但对人类无害,反而能捕杀害虫或成为鱼类的食饵。 当水黾五龄若虫时,经过蜕皮变成成虫时,经常可看到它们有交尾的情形。雄虫会爬到雌虫上方约三十分钟。 当水黾的成虫交尾后,雌虫主要的工作便是产卵。它喜欢在小而细的 水草茎秆上产卵。

编辑本段动物形态

水黾

水黾:体形细长,黑褐色,长约1厘米。头部为三角形,稍长。复眼1对,位于两侧;单眼退化;口吻稍长,分为3节,第2节最长;触角丝状,4节,突出于头的前方。前胸延长,背部黑褐色,前翅革质,无膜质部;足3对,前足较短,中、后足很长,跗节2节。腹面灰色,体的下面被有绢样的细毛。 栖于水上,能跳跃,捕食其他小虫。卵产于水草上。常以丝状物包蔽。

编辑本段性味

《本草抬遗》:"有毒。"

编辑本段功用主治

《纲目拾遗》:"治痔。"

编辑本段选方

治一切痔:婆子三十个,用三个纸包,每包十个。 水黾

于背阴处悬挂阴干。每包作一服,研烂,空心温酒调下,良久 乃吃饭。三日连三服。久痔脓血者,二、三十服。(《东医宝鉴》水马散)

编辑本段黾蝽科

半翅目的1科。跗节末端分叉,后足与中足距离近,前足与中足距离远的半水生蝽类昆虫。通称为黾蝽或水黾,俗名“卖油郎”等。世界性分布,已知 450种以上,中国已知近60种。由于在水面上划行生活而引人注目。 水黾

体小型至大型,长形或椭圆形。背面多为暗色而无光泽,无鲜明的花斑。身体腹面覆有一层极为细密的银白色短毛,外观呈银白色丝绒状,具有拒水作用。头平伸,单眼无。触角4节,明显伸出。喙4节,粗壮,直,但不紧贴于头部腹面。前胸背板极为发达,向后延伸,将中胸背板全部遮盖,外观不能看见;在无翅类型中尤其如此。前胸背板前端不具领圈。中胸小盾片不发达。无翅个体中,后胸背板外露,外观直接位于前胸背板之后。前翅质地均一,多少成鞘质,向端方渐薄,但没有界限明确的膜片。爪片区分不明显,静止时左右二前翅重叠范围大,不形成任何爪片接合缝。短翅、无翅现象甚为常见。中足与后足十分细长,向四周伸开,后足腿节多远伸过腹部末端。前足明显较短。跗节2节,端节的末端裂成2叶,一对爪着生在裂隙的基部。腹部具明显的侧接缘。雄虫抱器在有些种类中退化。雌虫产卵器针状。 卵产在浮于水面的叶片下方或其他物体上,以胶质粘附,或覆以胶质,亦有潜入水下产卵者。若虫大体形状与成虫相似,腹部没有臭腺,亦不具臭腺孔。 黾蝽科几终生生活于水面,借助体下的拒水性毛和伸开的肢体等适应性性状,不致下沉或被水沾湿。在水面上划行主要依靠中足和后足的动作,前足在行动时举起,不用以划行,主要用于捕捉猎物。黾蝽以掉落在水上的其他昆虫、虫尸或其他动物的碎片等物为食。栖居环境包括湖泊、池塘等静水水面以及溪流等流动的水面,在湍急的山溪上生活的种类,常常腹部变短或套缩入基部数节。海黾属等类群生活在海中,漂浮于开阔的洋面上,为昆虫中极少数正常在海上生活的类群之一。 黾蝽科分为8个亚科,中国种类分属于5个亚科。

编辑本段水黾轻功

水黾

小型水生昆虫水黾被喻为“池塘中的溜冰者”,因为它不仅能在水面上滑行,而且还会像溜冰运动员一样能在水面上优雅地跳跃和玩耍。它的高明之处是,既不会划破水面,也不会浸湿自己的腿。水黾是如何练就如此水上绝技? 对此,科学界一直有各种解释。一种解释是水表面的张力,还有的解释是它们的腿会分泌油脂。近日,中国科学院化学研究所研究员江雷和博士生高雪峰在11月4日出版的英国《自然》杂志上发表论文,揭开了水黾“水上轻功”的奥秘。该发现可望在不远的将来设计出新型微型水上交通工具,如无舷船舶。该发现还可用于新型防水纺织品的生产,甚至人类的水上行走都成为可能。 水黾(mian)是一种在湖水、池塘、水田和湿地中常见的小型水生昆虫,身长大约1厘米,可在水面划行。它有6条细长的腿,足上有纤毛。为什么水黾能在水上行走?一般教科书的解释是水表面的张力。

编辑本段书面解释

水黾

比如,一分钱的硬币重约一克,比重比水大,可是把它轻轻放在水面上,硬币却能漂浮,这是由于水表面张力的作用。水滴之所以能变成圆球形,也是由于表面张力作用的缘故。 水的表面有一层膜叫表面层。它处在气体与液体之间。液体表面层由于跟空气接触,与液体内部情况有所不同。表面层里分子的分布要比液体的稀疏些,也就是分子间的距离比液体内部的大一些。在液体内部,分子间的引力基本上等于斥力;在表面层中,由于分子间的距离比液体内部大,分子间的相互作用表现为引力。这种液体各部分间相互吸引的力,叫表面张力。在表面张力的作用下,液体表面有收缩到最小的趋势。 一般教科书都这样解释这个问题。一年前,美国麻省理工学院的数学家约翰.布什和同事就发现水黾的腿就像桨一样在水中划行,从而让它能够快速地飞奔,该研究小组的成员戴维德.胡说,腿不被弄湿是关键,这样可避免水黾在划行时浸入水中,如果它们不小心被水淹没,它们必须用十倍于身体的力量才能浮出水面。事实果真是这样吗?这种解释似乎看起来很有道理,但却无法解释水黾即使是在暴风雨的袭击中也能生存这样一个事实。而且水黾还会弹跳,弹跳时它们的腿脚为什么不会湿?为什么不会刺破水表面的张力?

编辑本段水黾的腿

水黾

水黾的腿的扫描电镜SEM照片(a)水黾腿的无数细长微刚毛(b)单根刚毛上的精细螺旋状的纳米凹槽结构 水滴的表面张力有多大呢?可以这样说,比水滴小的虫子,它是不能冲破表面张力而钻入水滴中去的。 水黾属于水生半翅目类昆虫,水黾的种类不同,大小也不一样,一只中等大小的水黾重约30毫克,比水轻,所以,它在水面上行走时,不会沉入水中。此外,水黾足的附节上,生长着一排排不沾水的毛,所以,与足接触的那部分水面会下凹,但它的足尖不会冲破表面张力。水黾长有三对足,三对足的分工也很明确,前足用来捕食,中足用来划分和跳跃,后足用来在水面滑行,这样它就可以在水面上自由自在的行动了。但是,如果往水里加一点中性洗涤剂,就会削弱水的表面张力,这时,走在水面的水黾足上的毛被沾湿,足冲破了表面张力而穿入水中,水黾就会沉入水中,当水黾沉下去后,由于表面张力的作用,水黾就再也浮不上来了。 会不会是它们的腿分泌油脂? 水黾

我们都知道,油脂可以浮在水面上,如果水黾的腿脚能分泌油脂,再加上水表面的张力,水黾不就浮在了水面上了吗? 为了证明油脂层和水面张力不是水黾在水面上行走的主要因素,江雷等人做了一个人工的水黾腿,并在上面涂了一层蜡。这条腿能够让水黾在水面上静止一会儿,但却不能经得起水的波动。 研究人员发现,水黾的腿能排开300倍于其身体体积的水量,这就是这种昆虫非凡浮力的原因。江雷和同事说,水黾的一条长腿就能在水面上支撑起15倍于身体的重量而不会沉没。而油脂层和水表面的张力却没有如此大的浮力。 水黾以极快的速度在水面上滑行以捕捉猎物。它在水面上每秒钟可滑行100倍于身体长度的距离,这相当于一位身高1.8米的人以每小时400英里的速度游泳。

编辑本段浮水原因

水黾腿部特殊的微纳米结构才是真正原因 江雷领导的研究小组在高倍显微镜下发现,水黾腿部上有数千根按同一方向排列的多层微米尺寸的刚毛。 人的头发的直径大约在80-100微米之间,而这些像针一样的微米刚毛的直径不足3微米,表面上形成螺旋状纳米结构的构槽,吸附在构槽中的气泡形成气垫,从而让水黾能够在水面上自由地穿梭滑行,却不会将腿弄湿。水黾的多毛腿一次能够在上面划出4毫米长的波纹。研究人员将水黾毛腿的这种性质称为超疏水性。 水黾是利用其腿部特殊的微纳米结构,将空气有效地吸附在这些同一取向的微米刚毛和螺旋状纳米沟槽的缝隙内,在其表面形成一层稳定的气膜,阻碍了 水黾

水滴的浸润,宏观上表现出水黾腿的超疏水特性。正是这种超强的负载能力使得水黾在水面上行动自如,即使在狂风暴雨和急速流动的水流中也不会沉没。 江雷说,水黾腿部刚毛的疏水性类似于鸭子背部的毛,但是,普遍的疏水性(或抗水性)也许会让昆虫在水面上呆一会儿,轻微的触动或扰动就会打破这种平衡。 然而,在水黾腿部和水面间形成的空气垫却让它们在水面上快速而稳定地行走或奔跑。他说,像鸭子一样,其它动物也拥有这种疏水的特性,但绝大多数都没有超级疏水特性该研究成果将用于新型水上交通工具。 研究者认为,通过对水黾纳米刚毛的疏水性能研究,不仅可以探索到纳米刚毛对水表面张力、流体阻力的影响规律及水黾之所以能在水面上自由行走的内在原因,还可望在不远的将来设计出新型微型水上交通工具,如无舷船舶。 除此而外,该发现可用于新型防水纺织品的生产,甚至人类的水上行走都成为可能。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/115122.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-03-12
下一篇2023-03-12

发表评论

登录后才能评论

评论列表(0条)

    保存