Mplus中关于SEM的介绍

Mplus中关于SEM的介绍,第1张

    结构方程模型(SEM)包括连续潜变量之间的回归模型(Bollen, 1989Browne &Arminger, 1995Joreskog &Sorbom, 1979)。也就是说,这些潜变量是连续的。这里需要注意的是:1. 潜变量(latent variables)是与观察变量(Observed variables)相对的,可通过数据分析观察;2. 观察变量可以是连续的(continuous)、删失的(censored)、二进制的(binary)、有序的(ordinal)、无序的(nominal)、计数的(counts),或者是这些类别的组合形式。

    SEM有两个部分:一个测量模型(measurement model)和一个结构模型(structural model)。

     测量模型 相当于一个多元回归模型(multivariate regression model),用于描述一组可观察的因变量和一组连续潜变量之间的关系。在此,这一组可观察的因变量被称为因子指标(factor indicators),这一组连续潜变量被称为因子(factors)。

    如何描述它们之间的关系?可以通过以下方式:

1. 若因子指标是连续的,用线性回归方程(linear regression equations);

2. 若因子指标是删失的,用删失回归或膨胀删失回归方程(censored normal or censored-inflated normal regression equations);

3. 若因子指标是有序的类别变量,用profit或logistic回归方程(probit or logistic regression equations);

4. 若因子指标是无序的类别变量,用多元logistic回归方程(multinomial logistic regression equations);

5. 若因子指标是计数的,用Poisson或零膨胀Poisson回归方程(Poisson or zero-inflated Poisson regression equations)。

     结构模型 则在一个多元回归方程中描述了三种变量关系:

1. 因子之间的关系;

2. 观察变量之间的关系;

3. 因子和不作为因子指标的观察变量之间的关系。

    同样,这些变量有不同的种类,所以要根据它们的类别来选择合适的方程进行分析:

1. 若因子为因变量,及可观察的因变量是连续的,用线性回归方程(linear regression equations);

2. 若可观察的因变量是删失的,用删失回归或膨胀删失回归方程(censored normal or censored-inflated normal regression equations);

3. 若可观察的因变量是二进制的或者是有序的类别变量,用profit或logistic回归方程(probit or logistic regression equations);

4. 若可观察的因变量是无序的类别变量,用多元logistic回归方程(multinomial logistic regression equations);

5. 若可观察的因变量是计数的,用Poisson或零膨胀Poisson回归方程(Poisson or zero-inflated Poisson regression equations)。

    在回归中,有序的类别变量可通过建立比例优势(proportional odds)模型进行说明;最大似然估计和加权最小二乘估计(maximum likelihood and weighted least squares estimators)都是可用的。

    以下特殊功能也可以通过SEM实现:

1. 单个或多组分析(Single or multiple group analysis);

2. 缺失值(Missing data);

3. 复杂的调查数据(Complex survey data);

4. 使用最大似然估计分析潜变量的交互和非线性因子(Latent variable interactions and non-linear factor analysis using maximum likelihood);

5. 随机斜率(Random slopes);

6. 限制线性和非线性参数(Linear and non-linear parameter constraints);

7. 包括特定路径的间接作用(Indirect effects including specific paths);

8. 对所有输出结果的类型进行最大似然估计(Maximum likelihood estimation for all outcome types);

9. bootstrap标准误差和置信区间(Bootstrap standard errors and confidence intervals);

10. 相等参数的Wald卡方检验(Wald chi-square test of parameter equalities)。

    以上功能也适用于CFA和MIMIC。

在这里给大家整理了一份web前端开发完整的学习路线,框架在第四阶段中,希望可以帮到你

Web前端需要学习HTML5+CSS3、JS交互设计、Node开发、前端框架、小程序+数据可视化、就业指导+项目提升几大部分。

在第一阶段HTML5+CSS3中,要学习HTML5基础、CSS基础、小U商城(PC端)、HTML5进阶、CSS3进阶、Less、小U商城(移动端)、小U商城后台管理系统(响应式)、项目答辩。这一阶段的培养方向是Web前端开发工程师、网页制作工程师、网站布局与重构工程师

第二阶段JS交互设计,要学习JavaScript核心语法、DOM和BOM、JavaScript高级进阶、面向对象编程、优学在线、Touch、jQuery、Zepto、项目答辩。这个阶段的培养方向则为Web前端开发工程师、移动端开发工程师、JS交互设计师、网站开发工程师。

第三阶段Node开发,要学习JavaScript

ES6、Node、Express、MySQL、Webpack+Gulp+模块化、WebSocket+Koa2、小U商城后台管理项目、项目答辩等。这一阶段的培养方向为Web前端开发工程师、移动端开发工程师、JS交互设计师、网站开发工程师、全栈开发工程师、Node开发工程师。

第四阶段前端框架,会学习Vue基础、Vue进阶、小U商城电商项目、TypeScript、React、优社区项目、项目答辩等课程。培养方向是Web前端开发工程师、移动端开发工程师、网站开发工程师、Vue开发工程师、React开发工程师。

第五阶段小程序+数据可视化,将要学习小程序基础、云开发、菜谱云平台、uni-app基础、小U商城、数据可视化、课堂监管大数据系统。培养方向为小程序开发工程师、数据可视化工程师。

第六阶段就业指导+项目提升,学习就业指导、优办公系统(综合项目提升)、企业面试复盘,培养方向则为React高级开发工程师。

Este é I o segundo presente que faz para você, dois anos, gostou de você já dois anos, com seu gotejamento intravenous, mas vindo também claramente na vista, talvez, não poderia vê-lo outra vez, mas, I bom quis continuar a faltá-lo gosta desta liga árabe, acompanhada o mais tarde cada aniversário! Uma vez que tido esse período de tempo, eu disse-me que deve ser vigoroso, porque era que alguém o dia voa seu lado, o protegia, mas poderia realizar não soube, esperado.Hoje seu aniversário, é também faraway seu hometown, esperado lhe que o amigo pode o dar para não ter o faction da nostalgia ao ~! O aniversário é alegre


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/116187.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-03-12
下一篇2023-03-12

发表评论

登录后才能评论

评论列表(0条)

    保存