数值孔径简写NA,数值孔径是物镜和聚光镜的主要技术参数,是判断两者(尤其对物镜而言)性能高低的重要标志。其数值的大小,分别标刻在物镜和聚光镜的外壳上。
数值孔径(NA)是物镜前透镜与被检物体之间介质的折射率(n)和孔径角(u)半数的正弦之乘积。用公式表示如下:NA=nsinu/2
孔径角又称"镜口角",是物镜光轴上的物体点与物镜前透镜的有效直径所形成的角度。孔径角越大,进入物镜的光通亮就越大,它与物镜的有效直径成正比,与焦点的距离成反比。
显微镜观察时,若想增大NA值,孔径角是无法增大的,唯一的办法是增大介质的折射率n值。基于这一原理,就产生了水浸物镜和油浸物镜,因介质的折射率n值大于1,NA值就能大于1。
数值孔径最大值为1.4,这个数值在理论上和技术上都达到了极限。目前,有用折射率高的溴萘作介质,溴萘的折射率为1.66,所以NA值可大于1.4。
这里必须指出,为了充分发挥物镜数值孔径的作用,在观察时,聚光镜的NA值应等于或略大于物镜的NA值。
数值孔径与其他技术参数有着密切的关系,它几乎决定和影响着其他各项技术参数。它与分辨率成正比,与放大率成正比,与焦深成反比,NA值增大,视场宽度与工作距离都会相应地变小。
二、分辨率
显微镜的分辨率指能被显微镜清晰区分的两个物点的最小间距,又称“鉴别率”。其计算公式是σ=λ/NA
式中σ为最小分辨距离;λ为光线的波长;NA为物镜的数值孔径。可见物镜的分辨率是由物镜的NA值与照明光源的波长两个因素决定。NA值越大,照明光线波长越短,则σ值越小,分辨率就越高。
要提高分辨率,即减小σ值,可采取以下措施:
1、降低波长λ值,使用短波长光源。
2、增大介质n值以提高NA值(NA=nsinu/2)。
3、增大孔径角u值以提高NA值。
4、增加明暗反差。
三、放大率和有效放大率
由于经过物镜和目镜的两次放大,所以显微镜总的放大率Γ应该是物镜放大率β和目镜放大率Γ1的乘积:
Γ=βΓ1
显然,和放大镜相比,显微镜可以具有高得多的放大率,并且通过调换不同放大率的物镜和目镜,能够方便地改变显微镜的放大率。
放大率也是显微镜的重要参数,但也不能盲目相信放大率越高越好。显微镜放大倍率的极限即有效放大倍率。
分辨率和放大倍率是两个不同的但又互有联系的概念。有关系式:500NA<Γ<1000NA
当选用的物镜数值孔径不够大,即分辨率不够高时,显微镜不能分清物体的微细结构,此时即使过度地增大放大倍率,得到的也只能是一个轮廓虽大但细节不清的图像,称为无效放大倍率。反之如果分辨率已满足要求而放大倍率不足,则显微镜虽已具备分辨的能力,但因图像太小而仍然不能被人眼清晰视见。所以为了充分发挥显微镜的分辨能力,应使数值孔径与显微镜总放大倍率合理匹配。
四、焦深
焦深为焦点深度的简称,即在使用显微镜时,当焦点对准某一物体时,不仅位于该点平面上的各点都可以看清楚,而且在此平面的上下一定厚度内,也能看得清楚,这个清楚部分的厚度就是焦深。焦深大,可以看到被检物体的全层,而焦深小,则只能看到被检物体的一薄层,焦深与其他技术参数有以下关系:
1、焦深与总放大倍数及物镜的数值孔径成反比。
2、焦深大,分辨率降低。
由于低倍物镜的景深较大,所以在低倍物镜照相时造成困难。在显微照相时将详细介绍。
五、视场直径(FieldOfView)
观察显微镜时,所看到的明亮的圆形范围叫视场,它的大小是由目镜里的视场光阑决定的。
视场直径也称视场宽度,是指在显微镜下看到的圆形视场内所能容纳被检物体的实际范围。视场直径愈大,愈便于观察。
有公式:
F=FN/β
式中F-视场直径;
FN-视场数(FieldNumber,简写为FN,标刻在目镜的镜筒外侧);
β-物镜放大率。
由公式可看出:
1、视场直径与视场数成正比。
2、增大物镜的倍数,则视场直径减小。因此,若在低倍镜下可以看到被检物体的全貌,而换成高倍物镜,就只能看到被检物体的很小一部份。
六、覆盖差
显微镜的光学系统也包括盖玻片在内。由于盖玻片的厚度不标准,光线从盖玻片进入空气产生折射后的光路发生了改变,从而产生了相差,这就是覆盖差。覆盖差的产生影响了显微镜的成响质量。
国际上规定,盖玻片的标准厚度为0.17mm,许可范围在0.16-0.18mm,在物镜的制造上已将此厚度范围的相差计算在内。物镜外壳上标的0.17,即表明该物镜所要求的盖玻片的厚度。
七、工作距离WD
工作距离也叫物距,即指物镜前透镜的表面到被检物体之间的距离。镜检时,被检物体应处在物镜的一倍至二倍焦距之间。因此,它与焦距是两个概念,平时习惯所说的调焦,实际上是调节工作距离。
在物镜数值孔径一定的情况下,工作距离短孔径角则大。
数值孔径大的高倍物镜,其工作距离小
在16世纪末之前,人们并没有什么方法可以观察到细胞,甚至还没有人知道细胞的存在,当时的研究只停留在动物和植物的形态、内部结构或生活方式等方面。直到1590年左右,显微镜的发明使人们发现和认识细胞成为可能。没有显微镜,就不可能发现细胞。从发明显微镜至今的400年来,显微镜在许多方面得到了改进:A、第一台显微镜是由荷兰密得尔堡一个眼镜店的老板詹森和他的父亲罕斯发明的。细说起来,詹森父子发明显微镜,还带有一定的偶然性呢!事情的经过是这作的:1590年,一个晴朗无风的早晨,詹森在楼顶上闲玩。无意中,他把两片凸玻璃片装到一个金属管子里,并用这个管子去看街道上的建筑物,奇怪的事情发生了,教堂高塔上大公鸡的雕塑比原来大了好几倍,这个意外的发现,使詹森兴奋起来,他高兴地跑下楼去,把父亲也拉上楼来观看,一起和他分享这种新发现带来的愉快。当然,偶然性的发现代替不了科学上的发明。值得强调的是,詹森父子俩的修养起了决定作用,他们抓住这个偶然的发现,认真思索,反复实践,用大大小小的凸玻璃片做各种距离不等的配合,终于发明了世界上第一台显微镜。当然,这台显微镜只能称为显微镜家族中的“始祖”,无论是放大倍数,还是分辨能力都是相当低的。
B、1660年,罗伯特。胡克对复合显微镜进行了改良。它的右侧有一个带油灯的支架,用来为显微镜下的标本照明。
C、1683年,列文虎克在显微镜中加了一块透镜。虽然只加了一块透镜,但是它能把标本放大266倍。列文虎克是第一个看到许多单细胞的人。
D、1886年,德国科学家恩斯特。阿贝和卡尔。蔡斯制作了一台与此图相似的显微镜。马蹄形的底座增加了显微镜的稳固性。底部的镜子能会聚并反射光线使光线透过上放的标本。现代复合光学显微镜已经能把标本放大到1000倍了。
E、1933年,德国物理学家恩斯特。卢斯卡创造了第一台电子显微镜(TEM)。这种显微镜是通过发射电子穿过极薄的标本切片来成像的。对于观察细胞的内部结构非常有用,TEM能把标本放大50万倍。
F、1965年,第一台商用的扫描电子显微镜(SEM)问世了。它把电子束发射到标本的表面(而不是穿过标本),然后形成标本外观的精细三维图像。SEM能把标本放大15万倍。
G、1981年,隧道扫描显微镜(STM)是通过检测从标本表面逸出的电子来成像的。科学家用它可以观察到细胞外层上的单个分子。STM能把标本放大100万倍。
随着科学技术的进一步发展,显微镜的结构也越来越复杂,其观察的功能也越来越完善,当然,我们最常使用的还是现代复合显微镜了。……通过显微镜,人们发现了细胞。
1665年,英国物理学家罗伯特。虎克(Robert Hooks)把软木切成极薄的薄片放在自己制造的一架复式显微镜下观察,在显微镜的视野里发现竟有许多蜂窝状的小室,他给这些小室取名为细胞(cell)。实际上,虎克当时所看到的只是一些死细胞的细胞壁,对细胞里的内含物,虎克当时并不清楚。
在Robert Hooks发现细胞的同时,Leeuwen Hooks也开始用显微镜观察微小的物体。Leeuwen Hooks是一名荷兰商人,也是一名自己制造透镜的业余科学家。他用这些透镜制造出了许多简易的显微镜。Leeuwen Hooks曾经观察过一个池塘里的水,他惊讶地的发现水中有些单细胞的生物。由此他成为第一个看到细菌等的微小单细胞生物的人。这两位科学家发现了细胞,为后人开启了通往微观世界的大门。
1674年,荷兰布商列文虎克(Antonie van Leeuwenhoek, 1632~1723)为了检查布的质量,亲自磨制透镜,装配了高倍显微镜(300倍左右),并观察到了血细胞、池塘水滴中的原生动物、人类和哺乳类动物的精子,这是人类第一次观察到完整的活细胞。列文?虎克把他的观察结果写信报告给了英国皇家学会,得到英国皇家学会的充分肯定,并很快成为世界知名人士。
列文虎克的一生致力于在微观世界中探索,发表论文402篇,其中《列文虎克发现的自然界的秘密》是人类关于微生物研究的最早专著。
金相显微镜主要用于鉴定和分析金属内部结构组织,它是金属学研究金相的重要仪器,是工业部门鉴定产品质量的关键设备,主要用以鉴别和分析各种金属及合金的组织结构,应用于工厂或实验室进行铸件质量鉴定,原材料的检验或对材料处理后金相组织的研究分析等工作
英徕铂金相显微镜具有以下特点:
1、精工细作,设计美观;
2、传统机型,质量稳定,成像清晰;
3、目镜筒与支撑台呈一定角度倾斜,使观察舒适;
4、仪器底座支撑面积较大,弯臂坚固,使仪器的重心较低,安放平衡可靠;
5、采用行星式同轴粗微动调焦装置,调焦舒适平稳;
6、采用平场物镜和平场目镜,视场平坦,清晰度高;
7、两路光路输出,一路用于观察,一路用于连接摄像装置(ELB-OM-4XC);
8、采用带有刻度标尺的双层机械载物台和落射照明装置,带可变光栏,亮度均匀可调。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)