矿物微形貌研究方法

矿物微形貌研究方法,第1张

矿物形貌研究是藉以探索矿物生长机制和生成历史的重要内容,通常用直接观察的方法进行。较大颗粒的宏观矿物形态只需肉眼观察或借助实体显微镜即可,更深入的微观形貌观察必须借助高倍显微镜进行。根据工作原理,可将矿物形貌观察显微镜分为光学和电子两大类。

一、光学显微镜

光学显微技术是在微米尺度上观察矿物形貌及结构的较普遍的方法,有实体、偏光和反光3种类型。

实体显微镜能较为直观地放大物体,放大倍数不高,一般为几倍至100倍,可以观察矿物形态、解理以及表面较明显的微形貌结构。

偏光显微镜能放大数十倍到数百倍,可以观察矿物的双晶、解理、块状或隐晶集合体形态等特征。

图24-1 透射相衬显微镜的光学系统示意图

图24-2 扫描电子显微镜结构示意图

反光显微镜通常用于不透明矿物的集合体形态的观察。

二、相衬显微镜

相衬显微镜能够观察到矿物表面纳米(nm)尺度的分子层厚度,对推动晶体表面微形貌的研究起了极其重要的促进作用。

相衬显微镜的光学系统能将入射光产生的位相差转换为振幅(或强度)差。前者肉眼无法辨认,经转换后就能直接观察位相差所反映的物体表面(反射)或内部(透射)的结构细节。

相衬显微镜的结构与普通偏光显微镜相似,所不同的是在聚光镜下方插入了一个环形空圈板;另有几个安装有位相板的相衬物镜及同轴调整望远镜3个特殊部分。环形空圈板的作用在于提高分辨率;位相板(即位相过滤器)的作用是加大图像的衬比度。相衬显微镜有透射式与反射式两种类型(透射式的光学系统见图24-1),前者用于观察薄片中矿物内部显微构造,后者用于观察晶体表面。借助相衬显微镜,能清晰看到微米(μm)级、具立体感的微观形貌,对探索矿物的结晶状态和生长机制,提供了许多用常规方法不能获得的丰富信息。

三、电子显微镜

电子显微镜包括透射电镜(TEM)和扫描电镜(SEM),是将电子束激发样品微区产生的信号收集、放大并转换成各种图像、图谱或强度数据,从而直接给出亚微观尺度的样品形貌、结构和成分的仪器。

透射电镜的结构主要由电子枪、电磁透镜(聚光系统)、成像系统、真空系统、显像部分、电源部分及各种附件组成。结构上它与普通光学显微镜相似,不同的是,光学显微镜用可见光作光源,在空气介质中工作,聚光系统是玻璃透镜,最高放大倍数为1000 倍左右,有效分辨率为0.2μm;而透射电镜则用电子束作射线源,由于电子波长很短,其分辨本领很高,为减少运动电子能量损失,在真空下工作,并采用双电磁透镜聚焦,以提高电子束强度和物镜成像后的亮度,放大倍数由几百倍到200万倍,分辨率达0.7~1nm,可观察晶格像、位错、晶体缺陷等微细结构的变化。透射电镜的实验技术,要求制备极薄(100~200nm)的透明样品,目前主要通过离子减薄制样技术获得。

扫描电镜是用细聚焦电子束在试样表面扫描时激发产生二次电子(辅有背散射电子、吸收电子和特征X射线),经收集、处理、放大后成二次电子像,从而获得样品表面的三维立体图像(图24-2)。扫描电镜主要功能是进行高分辨的微形貌观察。

目前扫描电镜普遍的分辨率是4~7nm,放大倍数可从10倍到30万倍,中间连续可调,图像清晰,立体感强。扫描电镜制样简单,对具导电性样品,不必经过加工,只要其大小不大于样品座即可;对于非导电性样品,需在表面喷镀5~20nm厚导电膜,通常是用二次电子发射系数高的金或碳喷镀(习惯称镀金或镀碳)。近年发展起来的环境扫描电镜除了不必喷镀外,还可对活体进行观察,适于进行矿物-生物相互作用研究。

除以上矿物形貌研究方法外,还有光学测角仪,主要对晶体的面角进行测量

四、扫描探针显微镜

探针显微镜(Scanning Probe Microscope,简称SPM)是指那些以隧道效应为理论基础发展起来的各种分析实验方法。它们都是通过一个探针相对于样品进行扫描,通过监测两者之间电、光、力、磁场等随针尖与样品间隙的变化来获取待测样品表面的有关信息。SPM家族中最为重要的两个成员是扫描隧道显微镜(Scanning Tunneling Microscope,简称STM)和原子力显微镜(Atomic Force Microscope,简称 AFM),其他 SPM 技术均是在此两种技术的基础上发展而来的。1988年和1990年,STM和AFM相继被引入矿物学的研究中,给矿物学、矿物材料学研究增添了一个有力工具。

1.扫描隧道显微镜

STM的基本原理是量子的隧道效应。所谓“隧道效应”是指当两个电极间被加上一个偏压并接近到一定程度时,电子从一个电极转移到另一个电极而产生电流的现象,所产生的电流称为隧道电流。根据产生隧道效应的原理,将原子限度的极细针尖和被研究物质表面作为两个电极,当样品与针尖的距离非常小(通常小于1nm)时,在外加电场作用下,电子会穿过两个电极之间的绝缘层由一个电极流向另一个电极,这种现象即前面介绍的隧道效应。隧道电流I是电子波函数重叠的量度,与针尖和样品之间的距离S及平均功函数X有关:

I∝Vbexp(-AX1/2S)

式中:Vb是加在针尖和样品之间的偏置电压;A为常数,在真空条件下约等于1;X为平均功函数

结晶学与矿物学

式中:X1和X2分别为针尖和样品的功函数。

由上式可知,隧道电流强度对针尖与样品间的距离非常敏感。当功函数为几个eV时,S每改变0.1nm,I将改变一个数量级。因此,利用电子反馈线路控制隧道电流的恒定,并用压电陶瓷材料控制针尖在样品表面的扫描,探针在垂直于样品表面方向上的高低变化就能反映出样品表面的起伏。将针尖在样品表面扫描时运动的轨迹直接在荧光屏或记录纸上显示出来,就得到了样品表面费米能级附近状态密度的分布或原子排列的图像。这种扫描方式称为恒流方式。也可控制针尖高度守恒扫描,通过记录隧道电流的变化来得到样品表面费米能级附近状态密度的分布,这种扫描方式称为恒高模式。因此一般的STM都有两种工作方式:恒流模式和恒高模式。恒高模式可以采用较快的扫描速度,因此可以减小噪音和热漂移的影响,较适合于矿物等较为复杂的物质表面的小范围观察。恒流模式则适合于低速扫描,常用于物质表面较大范围的观察。

扫描隧道显微镜的特点是STM实验不需接触样品就可研究物质表面结构。STM具有原子级的分辨率,使它成为目前分辨率最高的表面分析仪器。STM可以在各种环境中进行实验,STM可以直接观察原子间转移的过程。对于表面的吸附和渗透过程、矿物表面与溶液间的反应过程,STM可能描绘出较为详细的机理。

虽然STM具有很多独特的优点,但同时它也存在自己的局限性,如样品表面原子种类不同,或样品表面吸附有原子、分子时,由于不同种类的原子或分子团等具有不同的电子态密度和功函数,此时STM给出的等电子态密度轮廓不再对应于样品表面原子的起伏,而是表面原子起伏与不同原子和各自态密度组合后的综合效果。STM不能区分这两个因素。STM所观察的样品必须具有一定程度的导电性,对于半导体,观测的效果就差于导体。对于绝缘体则根本无法直接观察。针尖形状对图像有严重影响。

2.原子力显微镜

AFM的探头是对微弱力(如范德华力)极敏感的微悬臂。当微悬臂的针尖接触样品时,针尖尖端的原子与样品表面的原子会产生极微弱的排斥力。扫描样品时通过控制这种力使之恒定,针尖与样品间作用力的等位面便能从原子尺度上反映矿物表面的微形貌。

AFM不仅适用于导电样品,也适用于不导电样品。

3.扫描探针显微镜在矿物学研究中的应用

SPM应用于与矿物有关的研究始于1988年。近10年来SPM已被广泛应用于各种与矿物或矿物材料学研究有关的领域。

(1)矿物材料表面形貌研究

表面微形貌即表面的微观几何形态,是指特征尺度一般在微米级、纳米级到原子级的三维微观形貌。

在表面定性观察方面,SPM是目前分辨率最高的分析仪器。扫描电子显微镜虽是用于固体物质形貌观察的主要手段,但其分辨率难以超过6nm。SPM 的横向分辨率可达原子级,因此SPM填补了物质微形貌观察中分辨率从6nm到原子级之间的空白,使微形貌研究可以在前所未有的高分辨率水平上开展。在表面定量研究方面,SPM较其他分析手段更易实现表面二维、三维形貌数据的计算机采集和处理,进行形貌定量分析。因此SPM在表面形貌定量研究方面具有巨大潜力。国外近年来已开发出一些可计算材料表面二维参数的计算机软件。

SPM在矿物和材料表面形貌研究中的应用已有不少实例,用SPM观察到了很多矿物和其他材料表面重要的微形貌现象,如矿物表面的溶蚀现象、矿物和材料表面的生长纹等。

(2)矿物材料表面原子结构研究

SPM是目前唯一能在正空间观察物质表面原子排布的仪器,因此目前这方面的研究最为活跃。已用SPM观察到了若干矿物、有机和无机材料表面的原子排布、原子缺陷、表面重构、各种畴结构等重要的结构现象。如辉钼矿表面钼原子分布的STM图像、单晶硅表面7×7重构现象的STM像、硬石膏解理面的AFM图像,显示了氧和钙原子的排布等。

(3)矿物材料表面吸附和化学反应研究

表面吸附是表面科学研究中的重要课题。表面科学研究常常需要知道原子或分子吸附在表面的什么部位?它们如何与基底联结?用传统的表面分析技术只能了解表面的平均性质,不能对吸附的原子或分子成像,难以确切回答以上问题。而SPM在这一领域有独特的优点。由于SPM可在溶液中进行实验,因此SPM可用于直接观察表面的化学反应过程,如表面溶蚀过程和表面生长过程等。用SPM便获得了金浸泡在KI溶液中,I原子吸附在金表面的现象。

形貌和操纵,元素分析的仪器:SPM(AFM,STM等),TEM,SEM

器件加工:光刻(紫外,电子束,离子束等),纳米压印,激光直写等

材料性能:拉曼,荧光,紫外,PPMS,探针台,半导体测试系统,TGA等

自己搭建仪器很重要

什么是CMM?三坐标测量机(CMM)的发展概况及其基本组成2007-03-26 14:20三坐标测量机(Coordinate Measuring Machining,简称CMM)是20世纪60年代发展起来的一种新型高效的精密测量仪器。它的出现,一方面是由于自动机床、数控机床高效率加工以及越来越多复杂形状零件加工需要有快速可靠的测量设备与之配套;另一方面是由于电子技术、计算机技术、数字控制技术以及精密加工技术的发展为三坐标测量机的产生提供了技术基础。1960年,英国FERRANTI公司研制成功世界上第一台三坐标测量机,到20世纪60年代末,已有近十个国家的三十多家公司在生产CMM,不过这一时期的CMM尚处于初级阶段。进入20世纪80年代后,以ZEISS、LEITZ、DEA、LK、三丰、SIP、FERRANTI、MOORE等为代表的众多公司不断推出新产品,使得CMM的发展速度加快。现代CMM不仅能在计算机控制下完成各种复杂测量,而且可以通过与数控机床交换信息,实现对加工的控制,并且还可以根据测量数据,实现反求工程。目前,CMM已广泛用于机械制造业、汽车工业、电子工业、航空航天工业和国防工业等各部门,成为现代工业检测和质量控制不可缺少的万能测量设备。

图 三坐标测量机的组成

1—工作台 2—移动桥架 3—中央滑架 4—Z轴 5—测头 6—电子系统

现代精密测量技术现状及发展

现代精密测量技术是一门集光学、电子、传感器、图像、制造及计算机技术为一体的综合性交叉学科,涉及广泛的学科领域,它的发展需要众多相关学科的支持。在现代工业制造技术和科学研究中,测量仪器具有精密化、集成化、智能化的发展趋势。三坐标测量机(CMM)是适应上述发展趋势的典型代表,它几乎可以对生产中的所有三维复...

现代精密测量技术一门集光学、电子、传感器、图像、制造及计算机技术为一体的综合性交叉学科,涉及广泛的学科领域,它的发展需要众多相关学科的支持。在现代工业制造技术和科学研究中,测量仪器具有精密化、集成化、智能化的发展趋势。三坐标测量机(CMM)是适应上述发展趋势的典型代表,它几乎可以对生产中的所有三维复杂零件尺寸、形状和相互位置进行高准确度测量。发展高速坐标测量机是现代工业生产的要求。同时,作为下世纪的重点发展目标,各在微/纳米测量技术领域开展了广泛的应用研究。

1 坐标测量机的最新发展

三坐标测量机作为几何尺寸数字化检测设备在机械制造领域得到推广使用,而科学研究和机械制造行业的技术进步又对CMM提出更多新的要求,作为测量机的制造者就需要不断将新技术应用于自己的产品以满足生产实际的需要。

1.1 误差自补偿技术

德国Carl Zeiss公司最近开发的CNC小型坐标测量机采用热不灵敏陶瓷技术(Thermally insensitive ceramic technology),使坐标测量机的测量精度在17.8~25.6℃范围不受温度变化的影响。国内自行开发的数控测量机软件系统PMIS包括多项系统误差补偿、系统数识别和优化技术。

1.2 丰富的软件技术

Carl Zeiss公司开发的坐标测量机软件STRATA-UX,其测量数据可以从CMM直接传送到随机配备的统计软件中去,对测量系统给出的检验数据进行实时分析与管理,根据要求对其进行评估。依据此数据库,可自动生成各种统计报表,包括X-BAR&R及X_BAR&S图表、频率直方图、运行图、目标图等。美国Brown &Sharp公司的Chameleon CMM测量系统所配支持软件可提供包括齿轮、板材、凸轮及凸轮轴共计50多个测量模块。日本Mitutoyo公司研制开发了一种图形显示及绘图程序,用于辅助操作者进行实际值与要求测量值之间的比较,具有多种输出方式。

1.3 系统集成应用技术

各坐标测量机制造商独立开发的不同软件系统往往互不相容,也因知识产权的问题,些工程软件是封闭的。系统集成技术主要解决不同软件包之间的通信协议和软件翻译接口问题。利用系统集成技术可以把CAD、CAM及CAT以在线工作方式集成在一起,形成数学实物仿形制造系统,大大缩短了模具制造及产品仿制生产周期。

1.4 非接触测量

基于三角测量原理的非接触激光光学探头应用于CMM上代替接触式探头。通过探头的扫描可以准确获得表面粗糙度信息,进行表面轮廓的三维立体测量及用于模具特征线的识别。该方法克服了接触测量的局限性。将激光双三角测量法应用于1700mm×1200mm×200mm测量范围内,对复杂曲面轮廓进行测量,其精度可高于1μm。英国IMS公司生产的IMP型坐标测量机可以配用其他厂商提供的接触式或非接触式探头。

2 微/纳米级精密测量技术

科学技术向微小领域发展,由毫米级、微米级继而涉足到纳米级,即微/纳米技术。微/纳米技术研究和探测物质结构的功能尺寸与分辨能力达到微米至纳米级尺度,使类在改造自然方面深入到原子、分子级的纳米层次。

纳米级加工技术可分为加工精度和加工尺度两方面。加工精度由本世纪初的最高精度微米级发展到现有的几个纳米数量级。金刚石车床加工的超精密衍射光栅精度已达1nm,实验室已经可以制作10nm以下的线、柱、槽。

微/纳米技术的发展,离不开微米级和纳米级的测量技术与设备。具有微米及亚微米测量精度的几何量与表面形貌测量技术已经比较成熟,如HP5528双频激光干涉测量系统(精度10nm)、具有1nm精度的光学触针式轮廓扫描系统等。因为扫描隧道显微镜(STM,Scanning Tunning Microscope)、扫描探针显微镜(SPM,Scanning Probe Microscope)和原子力显微镜(AFM,Atomic Force Microscope)用来直接观测原子尺度结构的实现,使得进行原子级的操作、装配和改形等加工处理成为近几年来的前沿技术。

2.1 扫描探针显微镜

1981年美国IBM公司研制成功的扫描隧道显微镜(STM),把人们带到了微观世界。STM具有极高的空间分辨率(平行和垂直于表面的分辨率分别达到0.1nm和0.01nm,即可以分辨出单个原子),广泛应用于表面科学、材料科学和生命科学等研究领域,在一定程度上推动了纳米技术的产生和发展。与此同时,基于STM相似的原理与结构,相继产生了一系列利用探针与样品的不同相互作用来探测表面或界面纳米尺度上表现出来的性质的扫描探针显微镜(SPM),用来获取通过STM无法获取的有关表面结构和性质的各种信息,成为人类认识微观世界的有力工具。下面为几种具有代表性的扫描探针显微镜。

(1)原子力显微镜(AFM)

为了弥补STM只限于观测导体和半导体表面结构的缺陷,Binnig等人发明了AFM,AFM利用微探针在样品表面划过时带动高敏感性的微悬臂梁随表面的起伏而上下运动,通过光学方法或隧道电流检测出微悬臂梁的位移,实现探针尖端原子与表面原子间排斥力检测,从而得到表面形貌信息。就应用而言,STM主要用于自然科学研究,而相当数量的AFM已经用于工业技术领域。1988年中国科学院化学所研制成功国内首台具有原子分辨率的AFM。安装有微型光纤传导激光干涉三维测量系统,可自校准和进行绝对测量的计量型原子力显微镜可使目前纳米测量技术定量化。利用类似AFM的工作原理,检测被测表面特性对受迫振动力敏元件产生的影响,在探针与表面10~100nm距离范围,可以探测到样品表面存在的静电力、磁力、范德华力等作用力,相继开发磁力显微镜(MFM,Magnetic Force Microscope)、静电力显微镜(EFM,Electrostatic Force Microscope)、摩擦力显微镜(LFM,Lateral Force Microscope)等,统称为扫描力显微镜(SFM,Scanning Force Microscope)。

(2)光子扫描隧道显微镜(PSTM,Photon Scanning Tunning Microscope)

PSTM的原理和工作方式与STM相似,后者利用电子隧道效应,而前者利用光子隧道效应探测样品表面附近被全内反射所激起的瞬衰场,其强度随距界面的距离成函数关系,获得表面结构信息。

(3)其他显微镜

如扫描隧道电位仪(STP,Scanning Tunning Potentiometry)可用来探测纳米尺度的电位变化;扫描离子电导显微镜(SICM,Scanning Ion_Conductation Microscope)适用于进行生物学和电生理学研究;扫描热显微镜(Scanning Thermal Microscope)已经获得了血红细胞的表面结构;弹道电子发射显微镜(BEEM,Ballistic Electron Emission Miroscope)则是目前唯一能够在纳米尺度上无损检测表面和界面结构的先进分析仪器,国内也已研制成功。

2.2 纳米测量的扫描X射线干涉技术

以SPM为基础的观测技术只能给出纳米级分辨率,却不能给出表面结构准确的纳米尺寸,这是因为到目前为止缺少一种简便的纳米精度(0.10~0.01nm)尺寸测量的定标手段。美国NIST和德国PTB分别测得硅(220)晶体的晶面间距为192015.560±0.012fm和192015.902±0.019fm。日本NRLM在恒温下对220晶间距进行稳定性测试,发现其18天的变化不超过0.1fm。实验充分说明单晶硅的晶面间距具有较好的稳定性。扫描X射线干涉测量技术是微/纳米测量中的一项新技术,它正是利用单晶硅的晶面间距作为亚纳米精度的基本测量单位,加上X射线波比可见光波波长小两个数量级,有可能实现0.01nm的分辨率。该方法较其他方法对环境要求低,测量稳定性好,结构简单,是一种很有潜力的方便的纳米测量技术。自从1983年D.G.Chetwynd将其应用于微位移测量以来,英、日、意大利相继将其应用于纳米级位移传感器的校正。国内清华大学测试技术与仪器国家重点实验室在1997年5月利用自己研制的X射线干涉器件在国内首次清楚地观察到X射线干涉条纹。

软X射线显微镜、扫描光声显微镜等用以检测微结构表面形貌及内部结构的微缺陷。迈克尔逊型差拍干涉仪,适于超精细加工表面轮廓的测量,如抛光表面、精研表面等,测量表面轮廓高度变化最小可达0.5nm,横向(X,Y向)测量精度可达0.3~1.0μm。渥拉斯顿型差拍双频激光干涉仪在微观表面形貌测量中,其分辨率可达0.1nm数量级。

2.3 光学干涉显微镜测量技术

光学干涉显微镜测量技术,包括外差干涉测量技术、超短波长干涉测量技术、基于F-P(Febry-Perot)标准的测量技术等,随着新技术、新方法的利用亦具有纳米级测量精度。

外差干涉测量技术具有高的位相分辨率和空间分辨率,如光外差干涉轮廓仪具有0.1nm的分辨率;基于频率跟踪的F-P标准具测量技术具有极高的灵敏度和准确度,其精度可达0.001nm,但其测量范围受激光器的调频范围的限制,仅有0.1μm。而扫描电子显微镜(SEM,Scanning Electric Microscope)可使几十个原子大小的物体成像。

美国ZYGO公司开发的位移测量干涉仪系统,位移分辨率高于0.6nm,可在1.1m/s的高速下测量,适于纳米技术在半导体生产、数据存储硬盘和精密机械中的应用。

目前,在微/纳米机械中,精密测量技术一个重要研究对象是微结构的机械性能与力学性能、谐振频率、弹性模量、残余应力及疲劳强度等。微细结构的缺陷研究,如金属聚集物、微沉淀物、微裂纹等测试技术的纳米分析技术目前尚不成熟。国外在此领域主要开展用于晶体缺陷的激光扫描层析(Laser Scanning Tomograph)技术,用于研究样品顶部几个微米之内缺陷情况的纳米激光雷达技术(Nanoladar),其探测尺度分辨率均可达到1nm。

3 图像识别测量技术

随着近代科学技术的发展,几何尺寸与形位测量已从简单的一维、二维坐标或形体发展到复杂的三维物体测量,从宏观物体发展到微观领域。被测物体图像中即包含有丰富的信息,为此,正确地进行图像识别测量已经成为测量技术中的重要课题。图像识别测量过程包括:(1)图像信息的获取;(2)图像信息的加工处理,特征提取;(3)判断分类。计算机及相关计算技术完成信息的加工处理及判断分类,这些涉及到各种不同的识别模型及数理统计知识。

图像测量系统一般由以下结构组成,如图1所示。以机械系统为基础,线阵、面阵电荷耦合器件CCD或全息照相系统构成摄像系统;信息的转换由视频处理器件完成电荷信号到数字信号的转换;计算机及计算技术实现信息的处理和显示;反馈系统包括温度误差补偿,摄像系统的自动调焦等功能;载物工作台具有三坐标或多坐标自由度,可以精确控制微位移。

3.1 CCD传感器技术

物体三维轮廓测量方法中,有三坐标法、干涉法、莫尔等高线法及相位法等。而非接触电荷耦合器件CCD(Charge Coupled Device)是近年来发展很快的一种图像信息传感器。它具有自扫描、光电灵敏度高、几何尺寸精确及敏感单元尺寸小等优点。随着集成度的不断提高、结构改善及材料质量的提高,它已日益广泛地应用于工业非接触图像识别测量系统中。在对物体三维轮廓尺寸进行检测时,采用软件或硬件的方法,如解调法、多项式插值函数法及概率统计法等,测量系统分辨率可达微米级。也有将CCD应用于测量半导体材料表面应力的研究。

3.2 全息照相技术

全息照相测量技术是60年代发展起来的一种新技术,用此技术可以观察到被测物体的空间像。激光具有极好的空间相干性和时间相干性,通过光波的干涉把经物体反射或透射后,光束中的振幅与相位信息。


欢迎分享,转载请注明来源:夏雨云

原文地址:https://www.xiayuyun.com/zonghe/120195.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-03-13
下一篇2023-03-13

发表评论

登录后才能评论

评论列表(0条)

    保存