储层沥青成因包括:热成熟或热变作用、热化学硫酸盐还原作用(TSR)、微生物硫酸盐还原作用(BSR)、生物降解作用、水洗作用、气洗作用等。
一、生物降解作用
生物降解作用一般指喜氧细菌对烃类的氧化/分解作用,广义上包含了BSR作用。生物降解过程优先消耗正构烷烃,其次为支链烷烃,而环状化合物相对稳定。产物的色谱图呈“鼓包”状,即为“未可识辨的复杂混合物”(UCM)。UCM一般被认为是由结构复杂的支链和环状烃组成,最近的研究也表明部分可以是由相对简单的一甲基链烷替代的“T”支链烷烃。降解程度可由UCM比值(正构烷烃最大峰高/UCM鼓包的高度)来衡量,低于0.5的UCM比值被认为是强烈生物降解作用的标志(图8-3a,UCM=0.06)。而图8-3b饱和烃色谱未见明显的“鼓包”,图8-3c却显示芳香烃组分具有大的UCM。相对于UCM而言的高含量的正构烷烃饱和烃组分被认为主要由原油提供。但是,在缺乏养分(nutrients)的特定情形下,微生物优先消耗芳烃,而烷烃相对不变,这可能更好地解释了图8-3b、3c。芳香烃组分也被微生物所消耗,具有大的UCM鼓包,这种现象甚至出现在饱和烃组分不含UCM的沥青中,导致饱/芳比值的增高。生物降解可使饱和烃的碳同位素正向偏移+2‰,而芳香烃很少受影响,最高只为+1‰。生物降解一般发生于浅层氧化带和不整合面附近(Sassen,1980)。但是,Wilhelms等(1994)认为,从物理化学上分析,石油的生物降解开始于消耗正构烷烃,导致残余油缺乏低Hildebrand溶解因子的化合物,于是,提高了全油的总的溶解因子,升高而不是降低了沥青的溶解度。生物降解作用最不可能引起沥青的形成。诚然,这无法解释在含有大量微生物的浅层及不整合面附近出现的储层沥青。
二、热成熟作用或热变作用
这种成因的沥青/重油往往与气态或液态轻烃相伴,其成因机制类似于干酪根热降解产生石油,但要求地温较高,一般认为在150℃以上,也有人提出最低温度为138℃,低至93~104℃。热成熟作用产生的沥青具有低的氢指数(平均约80mg烃/g有机碳),热解峰温高于460℃, 为1.5%~2.5%之间。其产物特点是,C15+抽提物饱和烃、芳烃、沥青质和非烃(NSO)δ13C增大,沥青质和非烃(NSO)含量增高(Kuo,1994)。裂解后的原油富含轻烃、消耗多环生物标志物、GOR增大、相对密度降低、硫含量降低。热裂解原油一方面导致气态及轻烃的形成,另一方面形成固体残余,即焦沥青。但是,Mango(1991)认为原油裂解形成轻烃,从动力学上看是不可能的;Helgeson(1991)从热力学上也得出类似的结论(Blanc和Con-nan,1994)。
三、热化学硫酸盐还原作用(TSR)
Toland(1960)用各种各样的溶解硫酸盐和烃类作了水热实验。后来一些实验表明,TSR能在至少低于175℃的温度下发生。然而地质上的证据暗示了TSR作用的最低温度也许为100~140℃、120~150℃、140℃左右(图8-4)。
TSR很可能是世界上许多地下深处酸气(H2S)的主要成因,并可导致元素硫、黄铁矿及闪锌矿等硫化物的生成:
塔里木盆地流体-岩石相互作用研究
CaSO4+CH4→CaCO3+H2S+H2O(Worden等,1995)
TSR作用包括甲烷气与硫酸盐矿物的相互作用及原油、早期形成沥青的硫酸盐还原作用。但是甲烷气参与的反应,不会形成沥青;而早期形成的沥青也是由原油蚀变而来,因而下文主要讨论原油的TSR作用。
四、微生物硫酸盐还原作用(BSR)
人们关于SRB生存的温度范围争议较大,一般认为BSR作用的最高温度是60~80℃,对应于近地表环境和较浅的地下环境。最近则发现SRB生存温度可高达110℃(Jφrgensen等,1992)、95~130℃(Jensennius等,1990)甚至110~200℃(Stetter,1982;Brock,1985)(表8-2)。
图8-3 饱和烃、芳香烃气相色谱图
(据George等,1994)
a、b、c为饱和烃,d、e为芳香烃.a、d为同一样品
表8-2 SRB生存的最高温度
图8-4 TSR作用的下限温度
SRB一般被认为只能消耗喜氧细菌降解烃类的代谢产物有机酸(蔡春芳等,1995b;Machel等,1995)。反应式如下:
塔里木盆地流体-岩石相互作用研究
H2S+烃类→S0+蚀变烃类
其总反应式与TSR作用的反应式相近:
塔里木盆地流体-岩石相互作用研究
但是近年来的研究发现,在高达110℃的储层中,象Archaeoglobus的硫酸盐还原菌以烃类作为唯一的碳源及能源;SRB可直接消耗甲烷和C12以上的烃类,产生大量的硫化氢气体。通过扫描电镜SEM可观察到卵形的细菌与方解石表面上的固态沥青、自生元素S0共生的现象,被认为与有限程度的烃类厌氧生物降解有关,H2S氧化为S0(Sassen,1988)。诚然,这无法解释世界上多数油藏为何能保存下来。显然,对烃类喜氧生物降解、后期厌氧氧化和烃类直接厌氧生物降解这两种不同降解机理存在的条件及其广泛性还需作进一步研究。本文将两者统称为BSR作用。
五、BSR和TSR的区分标志
TSR和BSR作用都可产生沥青及硫化物,且其温度范围相互重叠,不易区分。但是,BSR和TSR被认为分别作用在0℃<t<60~80℃的低温成岩环境( ≈0.2%~0.3%)和80~100℃<t<150~180℃的高温成岩环境( ≈1.0%~4.0%)中(Machel等,1995)。尽管这种划分似乎太简单化了,但是可能反映两种不同作用机理的主要温度范围,即低温条件主要为BSR作用,而高温下TSR更普遍。基于此,根据反应产物及副产物的岩石学、硫化氢气体含量、同位素组成、固态沥青和成岩体系特点进行综合研究,可加以区分。
1.岩矿特征
矿物的晶体习性可用来作为烃类硫酸盐还原作用的一种岩石学标志。烃类的BSR作用一般反应速度较快,其副产物一般呈微晶、细粒状;而TSR作用一般发生在温度较高、埋深较大的成岩环境中,反应速度较慢,副产物结晶较充分,呈中粗晶、粗晶状,晶形较好。例如,在BSR过程中所形成的副产物黄铁矿一般具微晶细粒、草莓状结构,且与微晶、隐晶质白云石共生;而在TSR过程中形成的黄铁矿一般为立方体或柱状形态,可具有交代石膏假像(Machel,1989)。白云石一般呈粗晶、马鞍状。碳酸盐胶结物包裹体的均一化温度也存在高低之别。TSR产物可含丰富的硫化氢气体包裹体。固态沥青也存在某些差异。
2.硫化氢气体(H2S)
在天然气组分中,有机来源的硫化氢气体一般低于1%~3%。因此,H2S气体体积分数高于此值可认为是烃类的硫酸盐还原作用后的产物。BSR作用生成的H2S气体体积分数低于5%,而TSR作用生成的H2S体积分数较高,高于10%。但是,硫化氢体积分数受到流体及岩石中Fe、Pb、Cu、Zn等金属元素的影响甚大。这些元素易于形成硫化物(如黄铁矿、闪锌矿)甚至矿床。所以,H2S的体积分数反映了生成的H2S气体的最低值。
3.硫同位素比率
在显生宙中,海水硫酸盐的硫同位素组分(δ34S)是不断变化的,介于+10‰~+30‰之间(图8-5)(Claypool等,1980)。硫同位素组分在成岩作用过程中的变化可用来推测硫酸盐和硫化物等胶结物的成因及H2S气体(酸气)的来源。
图8-5 显生宙海水的δ34S变化
在BSR作用期间, 被还原为S2-,S—O键的断裂通常伴有大约15‰~30‰的动力分馏效应,而不同比例的中间化合物如硫代硫化物、多硫化物也影响了含硫化合物中32S的富集(Jorgensen,1990)。如果BSR作用处于开放体系中或者反应不彻底,那么同位素动力分馏效应就更大,最高达65‰。因此,在BSR作用过程中形成的金属硫化合物及H2S气体的硫同位素比率可能比硫酸盐母岩低大约15‰~65‰(表8-3)。在成岩作用早期,储层中细菌活动所形成黄铁矿的δ34SCDT大多为-35‰~﹢10‰(Kaplan,1983)及-37.9‰~﹢8.5‰,轻达-39.6‰(表8-3)。而在封闭体系中或硫酸盐被完全还原过程中,同位素分馏较小(图8-6)。
表8-3 无机化合物的硫同位素分馏效应及产物的δ34SCDT
(据Machel等,1995)
在TSR过程中 被还原为S2-,非生物S—O键断裂期间其动力硫同位素分馏效应在100℃时大约是20‰,在150℃时大约是15‰,在200℃时大约是10‰,即随着温度升高迅速下降(表8-3)。如在Nisku酸气气藏中,地温为125~145℃的储层中黄铁矿和硫化氢与硫酸盐母岩之间有-10‰~-18‰的差值。然而在一些深部气藏中硫化氢、元素硫以及金属硫化合物和硫酸盐母岩的硫同位素组分相似或者差异很小,一般为-1‰~-3‰,偶尔达到-7‰(Krouse,1977;Orr,1977)。因此,蚀变沥青的δ34S约为12.44±0.74‰,被认为是硬石膏的硫同位素(δ34S为19.0±0.26‰)和未蚀变的沥青的硫同位素(δ34S仅约4.6±0.40‰)以一定比例混合的产物。这种同位素分馏效应小,一般出现在硫酸盐被完全消耗或者成岩体系很封闭的情形下。沉积盆地中不同成因硫化氢的硫同位素分布特征如图8-6所示。
图8-6 沉积盆地含硫化合物硫同位素变化范围
4.固态沥青
BSR与热成熟作用所形成的沥青往往具有相似的地球化学特征,这与TSR成因的沥青有所不同(表8-4)。前者具有低δ34S值及高氢/碳比,族组分中沥青质含量较低;后者反之,沥青质含量可高达65%。TSR成因的沥青区别于其他沥青的一重要特征是:其碳同位素值随埋深增大而降低.δ13C可降低5‰~7‰。
表8-4 三种成因类型的固体沥青的鉴别标准
注:△δ34S沥表示δ34S沥—δ34 ,δ13C中的碳指固体沥青中饱和烃、NSO杂原子化合物或沥青质。
(据Machel等.1995)
5.成岩体系
1)不整合面附近成岩改造体系易发生BSR作用
长期暴露地表的地层不整合面往往是微生物活动的良好场所,而在深埋过程中还可以为地表水下渗的通道。东河2井侏罗系与石炭系不整合面附近两沥青砂岩抽提物色谱显示缺乏C15以前的正构烷烃,Pr/nC17、Ph/nC18分别为0.54~0.55、0.61~0.71,高于正常原油(0.30~0.42),并具有明显的“鼓包”,UCM比值为0.85、1.05,系喜氧和厌氧生物降解作用的综合反映。
陕甘宁盆地中部马家沟组是天然气储层,分布于奥陶系顶部150m左右的古风化壳上。其中黄铁矿呈微晶细粒、草莓状结构,与微晶白云石共生,δ34SCDT为9.01‰~10.87‰。同期海水及沉积硬石膏的δ34SCDT为25‰~27.1‰及28.2‰~33.30‰,比前者高约18‰。同位素分馏中等,系BSR所致,但差值接近于其最低分馏值,说明其成岩体系相对封闭或 -补给较慢。从共生的铁方解石δ13CPDB组成上看,δ13C偏负,为-4.16‰~-7.27‰,平均-6.1‰,低于该区无机成因的马鞍状白云石的-1.31‰(PDB)。铁方解石中碳元素部分来自有机物质,这与另一产物沥青的研究结果一致。共生的黑色硬石膏具有与黄铁矿相近的δ34S值,可能系自然硫转化的产物。这种转化被认为几乎没有同位素分馏效应。
2)TSR常发生于连续埋藏的成岩体系
TSR多发生在连续埋藏、深埋的碳酸盐岩成岩体系中,如Abu Dhabi二叠—三叠系Khuff组(Worden等,1995)、加拿大Pine Point(Powell和MacQueen,1984)、Big Horn盆地古生界(Orr,1974)、密西西比盐盆东南部Smackover组(Sassen,1988)等。塔中12井奥陶系—寒武系地温较高,具备了TSR作用的条件。
六、气洗作用
气洗作用主要指外来气体对饱含原油的油藏进行改造时所导致的烃类的脱沥青作用。如果原油已饱和了气体,那么注入的气体不大可能引起原油的脱沥青,因为气体进入油藏后,形成孤立的气顶,不改变原油的性质。而在油藏原油中气体未饱和或者具有气顶的油藏因进一步深埋而提高气体溶解度的情况下,外来气体的气洗作用可导致沥青的形成。这类沥青的δ13C与蚀变前的原油相差较小,这与生物降解沥青的相近,但是生物降解的产物含有较高的链状烷烃组分,而气洗产物则相对富集沥青族组分和极性化合物。而且,沥青一般分布于油柱的底部或沉积旋回的粗粒部分、相对高孔渗带,沥青分布明显具有成层性。Ula、Os-eberg油田沥青垫也出现于孔隙度和水平渗透率比含原油的围岩都高的储层中。West Purt油田储层沥青邻近断层,气体沿断层运移而进入孔渗相对较粗的储层中,引起沥青的沉淀。其形成机理是大量的气体沿着最小阻力的通道,流穿那些具有最高渗透率和最低毛细管力的地带,增强了脱沥青作用。美国海湾沿岸侏罗系储层沥青系热成熟作用成因,沥青充填前的孔隙与沥青含量具有线性相关关系(图8-7C),反映了在小范围内,热效应是相对均一的,一定的孔隙体积中所沉淀沥青的量仅取决于原油组分(沥青质含量)和热变程度。西非安哥拉白垩系储层沥青形成于脱沥青作用,高孔隙带中沥青含量增高(图8-7B),这可能与在较高孔渗的岩石中脱沥青效应增强有关。我国东部含油气盆地也具有相似的特征(图8-7A)。塔里木盆地塔中37井志留系含沥青暗色纹层与不含沥青钙质胶结的亮层交互,牙哈地区中新生界沥青分布于孔渗较高、粒度较粗的砂岩储层中,而其上覆层为比重很轻(0.78~0.82)、气/油比高的轻质油,被怀疑是气洗的产物。
图8-7 不同盆地储层沥青充填前孔隙与沥青含量的关系
A—东濮凹陷下第三系(纪有亮等,1995);B—西非安哥拉白垩系;C—美国海湾沿岸侏罗系(Lomando,1992)
七、水洗作用
水洗作用多与微生物降解作用相伴。水洗多发生在油水界面,其产物与生物降解作用的相近。由于甲苯、酚、苯易溶于水,往往作为水洗作用的标志。Evans(1971)认为水洗作用可导致沥青的形成,但是,储层条件下的模拟实验研究表明:尽管水洗作用导致原油比重、硫含量的增大,使原油物性降低,但是实验结果并未发现沥青沉淀物。
此外,蒸发-氧化作用、重力分异作用等被认为也可产生重油、沥青。
储层原油次生蚀变作用及沥青成因如表8-5所示。
表8-5 储层原油次生蚀变作用及沥青成因
国家地质实验测试中心主要围绕地球科学的发展,结合我国地球科学研究、资源环境调查、评价的需要,开展实验测试新技术新方法研究与推广应用,开展地质实验测试标准化研究,开展生态环境地球化学调查与评价技术研究,推动地质行业实验测试技术的不断进步,为国家基础性、公益性地质工作提供技术支撑,为国民经济发展和社会进步服务。
截至到2008年底,共有在职职工98人,其中专业技术人员85人,包括正高级职称11人、副高级职称23人,中级职称41人,有博士学位研究人员12人,硕士学历研究人员25人,本科32人。现有3个职能处室、4个专业研究室、2个其他业务机构,有1个院级重点实验室、1个公开出版学术期刊《岩矿测试》、3个专业委员会挂靠在中心。2008年度获国土资源科学技术奖二等奖2项,获准国家一级标准物质2项(其中1项合作),参加起草2个标准方法,公开发表科技论文共计44篇,其中SCI检索刊物论文8篇。
副主任吴淑琪研究员
副主任、党委副书记、纪委书记宋其敏高级政工师
副主任罗立强研究员
主任、党委书记尹明研究员
2008年中心实现货币工作总量4132万元,固定资产达到3931万元。2008年,中心共承担(参加)各类科研、地调项目73项,项目经费总计1779万元。其中:国家级项目(课题)24项,经费509万元;地质调查项目12项,经费982万元;省部级项目7项,经费29万元;基本科研业务费项目25项,经费245万元;其他项目5项,经费14万元。
中心集科学研究与对外测试服务于一体,主要开展实验测试新技术、新方法研发(包括实验测试仪器设备的研发与升级改造);生态环境地球化学研究;地质实验测试标准化研究;地矿部门权威的分析测试、应用推广与培训。
中心是国家科技部所属的13个国家级行业分析测试中心之一,是中国地质调查局命名的地质实验测试基地,通过了国家技术监督局计量认证、国家实验室认可,并获得国土资源部产品质量监督检验中心资质。
2008年度重要研究成果
科学仪器支撑装置
科学仪器支撑装置和系统的研制与开发:属国家十五科技攻关计划重大项目《科学仪器研制与开发》第六课题,主要研究人员包括:江林、邓赛文、詹秀春、尹明、刘明钟、关亚风、王建清、王安邦、牛刚、成红龙等。课题研制了9类装置12种产品,取得专利15项(发明3项、实用新型10项、发明申请2项),在国内外核心期刊上发表论文20余篇,这些装置突出了在技术上的先进性、实用性,并且有较广泛的用户需求和较好的市场前景,通过这些成果的推广和应用,可以提高目前我国此类装置的技术含量,缩短与国外先进水平的差距,改善分析样品前处理工作的条件,大大提高目前我国分析科学仪器的应用水平和效率,这些装置分别是:①功率连续可调微波消解装置采用微波功率连续可调技术,具有防爆膜及多重安全保护机构。结合计算机控制技术实现样品消解过程中的智能、连续、低耗、低污染。输出功率:200~1200W 连续可调;最高温度:230°C;最大压力:5MPa。②通用型自动进样装置分为三维方式(带通用模块)和极坐标方式两类,通过计算机编程控制和精密机械结合对样品的进样进行准确、定量、自动采集和控制。③X荧光光谱分析熔样机采用电热和高频感应加热技术,设计结构框架、摇动机构和计算机参数条件控制程序。最大升温:1250℃。④固相微萃取器配合GC使用,有3种以上的不同类型的萃取头(PDMS、PA、碳涂层);使用寿命在50次以上。⑤1700℃陶瓷纤维马弗炉比普通装置节电60%以上,升温速度快约1倍。其关键技术是设计及承受1700℃的陶瓷纤维板炉芯设计。⑥变频致冷水循环器采用变频原理,制冷功率/系统发热功率低于定速式同类设备的1.5~2.0,可连续工作,温度波动半径约1℃。⑦微型固态吸附棒萃取器和热解吸装置微型搅拌棒耐温250℃以上;对农残有可逆吸附特性;对常用的有机氯(六六六类)、氮、磷和菊酯类农药富集倍数不小于104;使用寿命30次以上。⑧室内装修主要有害气体检测试剂盒大气甲醛最低检测浓度0.05mg/m3、氨最低检测浓度0.1mg/m3;自动气体采样装置可无动力精确取样10mL、20mL或50mL。⑨全自动磨样机磨样速度≤30s/深度0.5mm;磨样深度达2mm/次;磨样平面度0.01mm;样品夹持力:磨样时样品上面施加力应大于30kg;样品温度可达800℃。该项成果获得2008年度国土资源科学技术奖二等奖。
科学仪器支撑装置
课题组成员在研发的设备前
地质调查多形态元素测试技术方法研究:属国土资源地质大调查工作项目,主要完成人员包括:李冰、詹秀春、江林、王晓红、饶竹、汪双清、孙青、王烨、周康民、周剑雄、杜谷、徐金沙、方金东、李刚。项目取得的主要成果如下:
(1)建立了HPLC-ICP-MS测定天然水、土壤样品中碘形态分析方法;建立了碱消解HPLC-ICP-MS测定生物样品中的甲基汞与乙基汞形态分析方法。
(2)完成了锆石、硅酸盐矿物和玻璃等进行了多元素微区原位的LA-ICP-MS定量分析方法研究,获得较佳的结果;建立了基体归一校正法;开展了锆石中U/Pb同位素定年方法的研究,初步建立了锆石U/Pb的LA-ICP-MS方法。
(3)采用了经改进的封闭熔矿溶解装置进行铂钯样品的分解,提高了样品分解效率,减少了试剂用量及环境污染;制定了模拟野外驻地现场铂钯快速分析方法。
(4)利用优化处理后的带消解、蒸馏和萃取的四种功能模块,建立了总磷、挥发酚、氰化物及阴离子表面活性剂的在线分析方法,达到了对不同的样品进行快速、简便的分析目的。
(5)研制出地下水除氟滤料产品,其吸氟率达到1.1g/kg。解决了滤料吸氟饱和再生难题。研制出多功能除氟配套装置,制定了简单、合理的除氟工艺流程;进行了小、试及现场应用试验,除氟效果达到国家生活饮用水标准。
(6)根据我国地质实验室从事地质物料痕量元素分析工作的特点,提出了检出限的确定方式和计算模式。确定了允许误差的确定模式,提出了测试方法检出限与地球化学图色阶划分的关系。
(7)完成了超细加工技术与设备以及地质样品粒度检测技术与设备的调研。采用超细地质样品的XRF分析结果表明,精度好于200目原样压样法,与熔融法相当。超细样品用于高灵敏度的ICP-MS/AES样品量可降至2mg,减少了试剂消耗和样品处理时间。
(8)建立了电子探针测定U、Th、Pb和稀土的分析方法。建立了电子探针测定独居石年龄的分析方法和编程工作。制备与测试了二个磷酸盐稀土标样。完成了独居石电子探针应用实例。
典型矿物激光剥蚀坑的SEM照片
A—橄榄石;B—锆石;C—石榴子石
自动在线水分析处理装置:总磷预处理功能模块
(9)初步建立了三个地区不同类型的油气地质样品微量元素分析的电子探针分析测试方法。初步建立了针对不同类型油气地质样品的能谱分析方法。
(10)将固相萃取、圆盘萃取、加速溶剂和微波萃取等先进的样品预处理技术用于不同的环境样品分析,提高了分析效率和准确性。提出了电子轰击和负化学电离源联合测定多氯联苯的新方法,使检测的灵敏度和准确性明显提高。首次采用国产502树脂制备可重复使用的固相萃取小柱,在满足分析要求的前提下性价比较目前的商品小柱明显提高。
(11)建立了采用加速溶剂萃取技术测定烃源岩可溶有机质萃取和氯仿沥青质含量的方法,并形成了烃源岩样品可溶有机质萃取的ASE操作规范。建立了石油族组分分离制备(中压液相色谱)方法,并提出了中压液相色谱技术分离制备石油族组分的操作规范。
(12)完成了8个配套方法,建立了湖泊水体生态环境调查样品中30项化学组分的分析方法。
(13)建立了一套合理的农业地质植物样品的制备方法;建立了适合于植物样品中痕量和超痕量元素的分析方法系列。
(14)研制了一个尿素有机碳同位素实验室工作标准,建立了EA-IRMS测量碳同位素测量方法和GBⅡ-IRMS测量水中氧同位素和氢同位素分析方法。
甲基汞和乙基汞混合标准HPLC-ICPMS色谱图
地质调查实验测试标准方法研究与标准物质研制:属国土资源地质大调查工作项目,主要完成人员:罗代洪、郑存江、董高翔、宋业文、顾铁新、程志中、冯静、姜莹、夏宁、甘露、孙德忠、屈文俊等。项目研制完成了13个金地球化学标准物质、5个高含量铜钼及银钒多金属系列标准物质、9个铁矿石标准物质、4个铬铁矿石标准物质、7个重晶石标准物质、12个稀有稀土精矿成分分析标准物质、1个地下水标准物质;还完成了4个硫化物多金属矿石标准物质、5个油页岩标准物质、3个珠江三角洲沉积物地球化学标准物质的样品采集和样品制备工作。该项目研制的标准物质定值元素多、覆盖元素广,每个元素所采用的定值方法均系该元素最适用的方法,主要为依据基准物质的湿法分析(滴定法、电感耦合等离子体原子发射光谱、原子吸收光谱、等离子质谱法、分光光度法)或绝对法(重量法),绝大多数均采用了两种以上不同原理的方法,从而保证了定值的溯源性,标准研制过程溯源链完整。所研制的标准物质均采自我国具有典型意义的多金属矿床,覆盖了不同矿源、补充扩展了我国重要的多金属矿石标准物质系列和地下水、金、油页岩、三角洲沉积物等标准物质。开展了生态环境地球化学调查评价中生物样品分析标准方法研究。
项目开发了地质实验测试标准研究技术合作与管理平台,制订了标准物质技术合作平台元数据标准和数据规范,设计了数据库,完成了数据处理和平台系统的功能模块开发的软件设计、编程、调试、应用等工作,并采集了标准物质原始数据。采用开发的标准研究技术合作与管理平台,实现了项目管理工作的创新。
标准物质
标准物质信息管理平台
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)