背景技术:
超级电容器是指介于传统电容器和充电电池之间的一种新型储能装置,它既具有电容器快速充放电的特性,同时又具有电池的储能特性。超级电容器具有充放电效率高、功率密度大、循环寿命长、环境友好等特点,已成为国内外清洁能源领域的研究热点之一。
氧化铁(fe2o3)具有较大的电容量、无毒、成本低廉等优点,被认为是一种很有前途的电极材料,利用其氧化还原性,被广泛用作赝电容器的负极材料。但是,氧化铁电极仍有许多缺陷,如导电性较差、循环性能差。多巴胺具有一定的还原性,在碱性条件下可以发生自聚合,同时在聚合过程中能石墨烯。聚多巴胺结构中含有大量的氨基和酚羟基等活性基团,能螯合金属离子使其锚定在石墨烯片上,同时三种复合材料间的相互作用能减少材料的聚集,从而制备尺寸较小的氧化铁-聚多巴胺-石墨烯复合纳米材料。
技术实现要素:
本发明提供了一种氧化铁-聚多巴胺-石墨烯复合材料、其制备方法及应用,解决了上述问题,本发明是通过如下技术方案来实现的。
本发明目的之一是提供一种氧化铁-聚多巴胺-石墨烯复合材料的制备方法,具体包括以下步骤:
s1:将氧化石墨烯分散到去离子水中,超声处理,调节ph值至8.5,得氧化石墨烯悬浮液;将氧化石墨烯悬浮液加热至60℃,加入盐酸多巴胺,反应12~24h,冷却至室温,得聚多巴胺-石墨烯悬浮液;
所述盐酸多巴胺:氧化石墨烯质量比为1:1;所述聚多巴胺-石墨烯悬浮液中石墨烯浓度为0.5~5mg/l;
s2:在s1制得的聚多巴胺-石墨烯悬浮液中加入铁盐,搅拌至溶解,加入沉淀剂,搅拌至溶解,得混合液;混合液进行水热反应,水热温度120~220℃,水热时间6~24h,反应结束后,离心、洗涤干燥,450℃焙烧,得氧化铁-聚多巴胺-石墨烯复合材料;
所述铁盐:石墨烯质量比为5:1~40:1;所述沉淀剂:铁盐摩尔比为5:1~30:1。
优选地,所述步骤s1中氧化石墨烯是采用改进的hummers方法制得的。
优选地,所述步骤s1中调节ph值至8.5采用的是50mmoll-1的tris-hcl缓冲溶液或氨水。
优选地,所述步骤s2中铁盐选自氯化铁、硫酸铁、硝酸铁、硫酸铁铵中的任意一种。
优选地,所述步骤s2中沉淀剂选自尿素、六次甲基四胺、氨水、乙酸钠中的任意一种。
本发明目的之二是提供由上述任一制备方法制得的氧化铁-聚多巴胺-石墨烯复合材料。
本发明目的之三是提供一种氧化铁-聚多巴胺-石墨烯复合材料在超级电容器中作为电极材料的应用。
本发明与现有技术相比具有如下有益效果:
(1)本发明提供了一种氧化铁-聚多巴胺-石墨烯复合电极材料的制备方法和应用,对炭材料石墨烯、金属氧化物、导电聚合物等电极材料进行合理的设计探索出具有优异电化学性能的电极材料,多巴胺具有一定的还原性,在聚合过程中能同时还原石墨烯,聚多巴胺结构中含有大量的氨基和酚羟基等活性基团,能螯合金属离子使其锚定在石墨烯片上,同时三种复合材料间的相互作用能减少材料的聚集,从而制备尺寸较小的氧化铁-聚多巴胺-石墨烯复合纳米材料,具有制备方法简单、形貌均匀、分散良好、成本低廉等优点;
(2)本发明提供的氧化铁-聚多巴胺-石墨烯复合材料在koh电解液中具有良好的电化学性能,在三电极体系中实现优异的比电容,在1ag-1条件下,比电容达到818fg-1,是一种具有良好电容性能的超级电容器复合材料,在实际应用方面具有非常重要的意义。
附图说明
图1为本发明实施例2制备的氧化铁-聚多巴胺-石墨烯复合材料的sem图;
图2为本发明实施例2制备的氧化铁-聚多巴胺-石墨烯复合材料的等温吸脱附曲线图;
图3为本发明实施例2制备的氧化铁-聚多巴胺-石墨烯复合材料的xrd图;
图4为本发明实施例2中制备的氧化铁-聚多巴胺-石墨烯复合材料的在不同扫描速率下的循环伏安曲线图。
具体实施方式
为了使本领域技术人员更好地理解本发明的技术方案能予以实施,下面结合具体实施例和附图对本发明作进一步说明,但所举实施例不作为对本发明的限定。
下述各实施例中所述实验方法和检测方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可在市场上购买得到。
实施例1
本实施例一种氧化铁-聚多巴胺-石墨烯复合材料,具体是通过如下步骤制备得到的:
采用改进的hummers方法制备氧化石墨烯,将10g的氧化石墨烯分散到去离子水中,在超声波清洗器中超声处理1h后移入三口烧瓶中,得到氧化石墨烯悬浮液,并用缓冲溶液或碱调节ph值至8.5;将所述氧化石墨烯悬浮液加热至60℃,向烧瓶中加入盐酸多巴胺,盐酸多巴胺与氧化石墨烯的添加比例为质量比1:1,利用盐酸多巴胺对氧化石墨烯进行还原和表面聚合,表面聚合的温度为60℃,聚合反应时间为24h,聚合产物冷却至室温后,加水稀释,制备浓度为2mgml-1的聚多巴胺-石墨烯悬浮液;
准确量取20ml稀释后的2mgml-1聚多巴胺-石墨烯悬浮液,放入磁子室温下搅拌10min,并加入400mg的fe(no3)39h2o,搅拌30min待fe(no3)39h2o全部溶解后,加入600mg尿素作为沉淀剂,搅拌20min尿素溶解后得到的混合物转入50ml的不锈钢反应釜中进行水热反应,水热温度为180℃,水热时间为12h。反应结束后取出后冷却至室温,离心洗涤,60℃真空干燥12h,450℃焙烧2h,即得氧化铁-聚多巴胺-石墨烯复合材料。
实施例2
本实施例一种氧化铁-聚多巴胺-石墨烯复合材料,具体制备方法和实施例1相同,不同之处仅在于,所采用的fe(no3)39h2o与石墨烯的质量比为20:1。
实施例3
本实施例一种氧化铁-聚多巴胺-石墨烯复合材料,具体制备方法和实施例1相同,不同之处仅在于,所采用的fe(no3)39h2o与石墨烯的质量比为30:1。
实施例4
本实施例一种氧化铁-聚多巴胺-石墨烯复合材料,具体制备方法和实施例1相同,不同之处仅在于,所采用的fe(no3)39h2o与石墨烯的质量比为40:1。
以实施例2制备的氧化铁-聚多巴胺-石墨烯复合材料为例,对其进行性能检测,如图1-3所示:
图1为实施例2制备的氧化铁-聚多巴胺-石墨烯复合材料的sem图,由图1可以看出,fe2o3纳米颗粒呈小球状,平均尺寸约40nm,均匀分布在pda-rgo表面;图2为实施例2制备的氧化铁-聚多巴胺-石墨烯复合材料的等温吸脱附曲线,由图2可以看出,吸脱附曲线为典型的iv型曲线,表明复合材料具有介孔结构,部分石墨烯碎片在合成过程中可作为模板剂存在,使制备的复合材料形成了介孔结构;图3为实施例2制备的氧化铁-聚多巴胺-石墨烯复合材料的xrd图,由图3可以看出,样品在2θ=24.0°,33.3°,35.7°,41°,43.4°,49.6°,54.2°,57.2°,62.6°和64.1°均有较强的衍射峰,这些峰对应于α-fe2o3的(012),(104),(110),(113),(202),(024),(116),(018),(214)和(300)晶面,表明复合材料中的氧化铁为α-fe2o3。
同样对实施例1和实施例3-4也进行了测试,实施例1和实施例3-4制备的材料也具有和实施例2相似的表面微结构特征,由于实施例1~4所制备的氧化铁-聚多巴胺-石墨烯复合材料所具有的表面微结构特征,它们可作为超级电容器中的工作电极材料来使用。
下面我们以实施例1~4所制备的氧化铁-聚多巴胺-石墨烯复合材料作为超级电容器的工作电极材料,采用循环伏安法对超级电容器的性能进行测试。
超级电容器的工作电极制作过程如下:将上述实施例所制备的氧化铁-聚多巴胺-石墨烯复合材料与乙炔黑和ptfe按80:10:10的质量比例混合调匀后涂在泡沫镍上,涂抹面积为1cm*1cm,然后放入真空干燥箱中60℃干燥过夜,制成工作电极。
具体测试条件为:用铂电极作为对电极,氧化汞电极为参比电极,以及上述工作电极,电解液为6mkoh溶液,电压窗口为-1.05~-0.05v,扫描速率5mvs-1~80mvs-1。实施例1~实施例4的氧化铁-聚多巴胺-石墨烯复合材料作为工作电极的具体测试结果如下表1所示:
表1实施例1~4提供的复合材料的比电容结果
由表1可以看出,实施例1~实施例4制备的氧化铁-聚多巴胺-石墨烯复合材料在6mkoh电解液中均具有优异的电容性能。
此外,针对实施例2提供的氧化铁-聚多巴胺-石墨烯复合材料,我们还进一步测定了其在不同扫描速率下的循环伏安曲线图,图4为实施例2提供的氧化铁-聚多巴胺-石墨烯复合材料在不同扫描速率下的循环伏安曲线图(沿箭头方向扫描速率依次为5mvs-1,10mvs-1,20mvs-1,30mvs-1,50mvs-1,80mvs-1)。由图4可以看出,氧化铁-聚多巴胺-石墨烯复合材料在不同扫速下均存在一对对称的氧化还原峰,表明样品具有赝电容性质。氧化峰和还原峰的位置随着扫速的增加而变化,随着扫速增加,氧化还原峰的面积增加,表明在高扫速下具有更大的电容。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内也意图包含这些改动和变型在内。
▲第一作者:宋丽娜、张伟、王颖;通讯作者:徐吉静教授
通讯单位:吉林大学
论文DOI:10.1038/s41467-020-15712-z
针对锂氧气电池存在的反应动力学缓慢而导致能量转换效率低的问题,研究者通常开发高效、稳定的正极催化剂来降低电池的充电极化电压提高反应动力。该工作将Co单原子固定于掺杂N的碳球壳载体上,用于锂氧气电池的高效催化反应,实验发现Li2O2形成和分解路线与LiO2在单原子催化剂的吸附能有关。研究明确指出,在放电过程中,原子级分散的活性位点能够诱导放电产物的均匀成核和外延生长,最终形成有利的纳米花状放电产物。在充电过程中,CoN4活性中心对放电中间体LiO2弱的吸附能,诱导充电反应由两电子路径向单电子路径转变。 得益于高分散的Co-N单原子催化剂的能级结构和电子结构所发生的根本性变化,大幅提升了电池的充电效率和循环寿命。与同等含量的贵金属基催化剂相比,达到600 mV充放电极化电压的降低和218天的长寿命循环。
锂氧气电池具有锂离子电池10倍以上的理论容量密度,被誉为颠覆性和革命性电池技术 。然而该电池还处于研发的初级阶段,受限于ORR和OER电化学反应动力学缓慢,电池的实际容量、倍率性能、能量效率和循环寿命距产业化应用还有很大差距。因而开发高效稳定的催化剂,是提高电池反应动力和循环效率的迫切需要。原子级纳米晶具有最大化的原子利用效率和独特的结构特点,往往表现出不同于传统纳米催化剂的活性、选择性和稳定性,为调控电化学反应过程提供了多种可能。在锂氧电池中,电解液中可溶性LiO2中间体能够调控放电产物Li2O2的形成与分解路线。先前的研究结果表明[1],不同的生成路线与LiO2在催化剂的不同晶面上的吸附能有关。 因此,探究单原子催化剂的尺寸效应对LiO2吸附能的影响,可能是一种调整低供体数电解质中过氧化锂形成与分解路径的新思路。这一新发现将为高能量效率和长循环寿命的锂氧电池的设计提供更多的选择。
单原子催化剂(SACs)是一类非常重要的电催化剂,其独特的单分散结构集均相催化和多相催化剂的优点于一身,拥有最大的金属利用率、优异的催化活性和稳定性。同时,SACs的活性位点相对简单确定且易于调控,因而这种独特的结构和性能使得单原子催化剂成为了一个非常理想的催化机理研究和性能优化的材料平台。然而当单原子催化剂与锂空气电池相遇,会擦出怎样的火花呢?本文采用原位聚合技术,设计合成了Co单原子嵌入的氮掺杂碳空心球(N-HP-Co)用于锂氧气电池的研究,并对其充放电过程进行详细分析。其结果表明,受益于N-HP-Co最大化暴露的CoN4单原子活性位点及活性位点在碳球壳上的均匀分布,降低了对LiO2的吸附能力,有效的改变了电池的反应路径,使得电池反应动力学得到极大提高,大幅提升了电池性能。
▲图一 单原子催化剂的合成过程。
单原子催化剂由于活性位点均匀性的提高以及配位环境的高度可控性,在许多催化反应中都表现出较高的催化活性。因此将单原子Co催化剂应用于锂氧气电池中,来探究对Li2O2形成与分解反应路径的影响。我们采用原位聚合的方法,以二氧化硅作为模板,盐酸多巴胺作为碳源,并在900 °C的氮气氛围内热解。
▲图二 单原子催化剂的特性表征。a, b) 样品的SEM图像(a:1微米;b:200纳米);c) 样品的TEM图像(主图:200纳米;插图:10纳米);d) 样品的EDX元素分析(50纳米);e, f) 样品的HAADF-STEM图像(e:50纳米;f:2纳米);g) 样品及对比材料的XRD图像;h) 样品的N 1s XPS光谱;i) 样品及对比材料的氮气吸附曲线。
▲图三 单原子催化剂的原子结构分析。a) 样品的XANES光谱;b) 样品的傅里叶转换的Co-K边光谱;c, d)样品在k和R空间的EXAFS拟合曲线。
N掺杂的碳球壳作为载体是锚定Co单原子的关键步骤。高角度环形暗场球差电镜(HAADF)、能量色散谱(EDX)元素映像图表和X射线吸收光谱(XAS)测试等关键性表征技术证实了单原子Co的成功制备和CoN4高活性位点的存在。
▲图四 单原子催化剂的放电机理研究。a) 样品及对比材料的放电曲线;b) 样品及对比材料的CV曲线;c) 样品及对比材料的倍率性能;d, e, f) 样品及对比材料的放电产物的SEM图像及相应的XRD谱图(500纳米);h, i) 样品及对比材料的放电机理图。
受益于N-HP-Co SACs最大化暴露的CoN4单原子活性位点在碳球壳上的均匀分布,电极氧化还原反应动力学得到极大提升,加快了放电产物Li2O2的形成速率,大幅提升了电池的放电容量和倍率性能。与同等含量的贵金属催化剂相比,在相同的电流密度和容量下,N-HP-Co SACs具有更多的反应活性位点,因而更有利于生成纳米片状的Li2O2,并通过“外延生长方式”进一步组装形成有利的纳米花状Li2O2。这种特殊的放电机制有利于打破电荷传输限制和放电产物电化学绝缘的本质。
▲图五 单原子催化剂的充电特性。a) 样品及对比材料在不同充电阶段的紫外可见光谱图;b) 样品的充电机理图;c-h) 样品及对比材料上的不同结构对LiO2的吸附能。
为了更全面地了解CoN4单位点催化剂的充电机理,通过密度泛函理论(DFT)计算表明复杂的配位环境可以显著改变中心金属原子CoN4对LiO2*的吸附能力,从而调控反应的活性和选择性。可以看出,CoN4活性中心对放电中间体LiO2弱的吸附能,有利于提高LiO2在电解质中的溶解度,诱导充电反应过程由两电子路径向单电子路径转变。因而有利于提高电池的充电效率。
▲图六 锂空气电池的循环稳定性。a) 样品及对比材料的循环性能;b-e) 样品及对比材料在不同循环过程中放电产物的SEM图像(b, d:1微米;c, e:500纳米);f, g) 样品及对比材料在不同循环过程中的放电产物的XPS光谱。
单原子催化的锂空气电池可以有效的抑制副反应的发生,并展现出优异的循环稳定性,充分验证了催化剂对放电产物的精准调控对稳定电池体系的重要作用。
▲图七 单原子催化剂在循环过程中的稳定性。a) 样品在全圈循环后的XPS光谱;b) 样品在多圈循环后的EDX光谱(200纳米);c) 样品在多圈循环后的XANES光谱;d) 样品在多圈循环后的傅里叶转换的Co-K边光谱。
N-HP-Co 在50次的循环过程中,Co的单原子结构依然被保留。Co单原子在碳载体上的固有稳定性使它们在电化学反应中具有优异的耐久性,这一显著的优势与低成本的优势相结合,为金属单原子催化剂在锂氧电池反应路线的可调性提供了新的策略。
单原子催化剂的合成受到草莓生长过程的启发,采用二氧化硅为模板,原位聚合生成氮掺杂的Co单原子催化剂。由于单原子催化的本质特征,低配位环境和单原子与碳球壳之间的协同作用能够精准的调控锂氧气电池中放电产物的生成与分解路线。与同等含量的贵金属催化剂相比,单原子催化剂不仅能够调控放电产物的形貌,同时增加了放电容量,避免了过多的副反应的发生,极大地提高了电池的电催化性能。该研究提出的单原子催化正极的概念、设计、制备及催化机制,将为锂空气电池领域新型催化剂的发展提供新的研究思路和科学依据,具有鲜明的引领性和开创性特征。
参考文献
[1] Yao, W. T. et al. Tuning Li2O2 formation routes by facet engineering of MnO2 cathode catalysts. J. Am. Chem. Soc.,2019,141,12832-12838.
徐吉静,1981年7月出生于山东省单县,现任吉林大学,化学学院,无机合成与制备化学国家重点实验室,未来科学国际合作联合实验室,教授,博士生导师。光学晶体标准化技术委员会副秘书长。主要从事多孔新能源材料与器件领域的基础研究和技术开发工作,研究方向包括锂(钠、钾、锌)离子电池关键材料及器件,锂空气(硫、二氧化碳)电池等新型化学电源,外场(光、力、磁、热)辅助能量储存与转化新体系。近5年共发表SCI学术论文50余篇,其中包括第一作者/通讯作者论文:Nat.Commun.3篇、Nat.Energy 1篇、Angew.Chem.Int.Ed. 2篇、Adv.Mater.3篇、Energy Environ.Sci.1篇、ACS Nano 1篇、ACS Cent.Sci.1篇。迄今为止,论文被他引4000余次,单篇最高引用360次,12篇论文入选ESI高引论文,研究成果被Nature、Science等作为亮点报道。获授权发明专利和国防专利10项。曾获科睿唯安“全球高被引学者”(2019年)、吉林省拔尖创新人才(2019年)、吉林省青年 科技 奖(2018年)和吉林大学学术带头人(2018年)等奖项或荣誉。
原子力显微镜表征石墨烯的什么性质当然是原子力显微镜AFM,看高度图石墨烯单层不到1 nm。应该说AFM是表征石墨烯材料最方便的手段了。当然,AFM表征的时候应注意区分灰尘、盐类和石墨烯分子。
当然光学显微镜、扫描电镜SEM也可以用来表征石墨烯。还有高分辨率透射电镜HRTEM可以看到石墨烯的蜂窝状原子图像,可以看到氧化石墨烯还原后的缺陷。
欢迎分享,转载请注明来源:夏雨云
评论列表(0条)